These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1486785)

  • 21. Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices.
    Medvitz RB; Kreider JW; Manning KB; Fontaine AA; Deutsch S; Paterson EG
    ASAIO J; 2007; 53(2):122-31. PubMed ID: 17413548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stress related collagen ultrastructure in human aortic valves--implications for tissue engineering.
    Balguid A; Driessen NJ; Mol A; Schmitz JP; Verheyen F; Bouten CV; Baaijens FP
    J Biomech; 2008 Aug; 41(12):2612-7. PubMed ID: 18701107
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A general method for the computer simulation of biological systems interacting with fluids.
    Peskin CS; McQueen DM
    Symp Soc Exp Biol; 1995; 49():265-76. PubMed ID: 8571229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical simulation of opening process in a bileaflet mechanical heart valve under pulsatile flow condition.
    Shi Y; Zhao Y; Yeo TJ; Hwang NH
    J Heart Valve Dis; 2003 Mar; 12(2):245-55. PubMed ID: 12701798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An integrated macro/micro approach to evaluating pivot flow within the Medtronic ADVANTAGE bileaflet mechanical heart valve.
    Shu MC; Gross JM; O'Rourke KK; Yoganathan AP
    J Heart Valve Dis; 2003 Jul; 12(4):503-12. PubMed ID: 12918854
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic impact stress analysis of a bileaflet mechanical heart valve.
    Yuan Q; Xu L; Ngoi BK; Yeo TJ; Hwang NH
    J Heart Valve Dis; 2003 Jan; 12(1):102-9. PubMed ID: 12578344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the hemodynamics of several prosthetic heart valves: in vitro study.
    Modi VJ; Akutsu T
    Monogr Atheroscler; 1990; 15():125-37. PubMed ID: 2296238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dependence of tissue valve leaflet motion on the viscosity of blood analogue fluid.
    Chandran KB; Fatemi R; Schoephoerster R
    Life Support Syst; 1986; 4(4):289-303. PubMed ID: 3561030
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The hemodynamic effects of mechanical prosthetic valve type and orientation on fluid mechanical energy loss and pressure drop in in vitro models of ventricular hypertrophy.
    Travis BR; Heinrich RS; Ensley AE; Gibson DE; Hashim S; Yoganathan AP
    J Heart Valve Dis; 1998 May; 7(3):345-54. PubMed ID: 9651851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclic loading response of bioprosthetic heart valves: effects of fixation stress state on the collagen fiber architecture.
    Wells SM; Sellaro T; Sacks MS
    Biomaterials; 2005 May; 26(15):2611-9. PubMed ID: 15585264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An approach to the simulation of fluid-structure interaction in the aortic valve.
    Carmody CJ; Burriesci G; Howard IC; Patterson EA
    J Biomech; 2006; 39(1):158-69. PubMed ID: 16271600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pressure and flow fields in the hinge region of bileaflet mechanical heart valves.
    Gao ZB; Hosein N; Dai FF; Hwang NH
    J Heart Valve Dis; 1999 Mar; 8(2):197-205. PubMed ID: 10224581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visualization of tissue velocity data from cardiac wall motion measurements with myocardial fiber tracking: principles and implications for cardiac fiber structures.
    Jung BA; Kreher BW; Markl M; Hennig J
    Eur J Cardiothorac Surg; 2006 Apr; 29 Suppl 1():S158-64. PubMed ID: 16564182
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions.
    Griffith BE
    Int J Numer Method Biomed Eng; 2012 Mar; 28(3):317-45. PubMed ID: 25830200
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characteristics of pulsatile blood flow through the curved bileaflet mechanical heart valve installed in two different types of blood vessels: velocity and pressure of blood flow.
    Bang JS; Yoo SM; Kim CN
    ASAIO J; 2006; 52(3):234-42. PubMed ID: 16760710
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A computer simulation of the blood flow at the aortic bifurcation.
    Lou Z; Yang WJ
    Biomed Mater Eng; 1991; 1(3):173-93. PubMed ID: 1842515
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Asynchronous closure and leaflet impact velocity of bileaflet mechanical heart valves.
    Wu ZJ; Hwang NH
    J Heart Valve Dis; 1995 Jul; 4 Suppl 1():S38-49. PubMed ID: 8581210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A design-based model of the aortic valve for fluid-structure interaction.
    Kaiser AD; Shad R; Hiesinger W; Marsden AL
    Biomech Model Mechanobiol; 2021 Dec; 20(6):2413-2435. PubMed ID: 34549354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model.
    Dumont K; Vierendeels J; Kaminsky R; van Nooten G; Verdonck P; Bluestein D
    J Biomech Eng; 2007 Aug; 129(4):558-65. PubMed ID: 17655477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flow within models of the vertebrate embryonic heart.
    Santhanakrishnan A; Nguyen N; Cox JG; Miller LA
    J Theor Biol; 2009 Aug; 259(3):449-61. PubMed ID: 19410580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.