These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1486785)

  • 41. Computational techniques for solving the bidomain equations in three dimensions.
    Vigmond EJ; Aguel F; Trayanova NA
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1260-9. PubMed ID: 12450356
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Flow in prosthetic heart valves: state-of-the-art and future directions.
    Yoganathan AP; Chandran KB; Sotiropoulos F
    Ann Biomed Eng; 2005 Dec; 33(12):1689-94. PubMed ID: 16389514
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A simulated dye method for flow visualization with a computational model for blood flow.
    Kim T; Cheer AY; Dwyer HA
    J Biomech; 2004 Aug; 37(8):1125-36. PubMed ID: 15212917
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Flow visualization through two types of aortic prosthetic heart valves using stereoscopic high-speed particle image velocimetry.
    Kaminsky R; Kallweit S; Weber HJ; Claessens T; Jozwik K; Verdonck P
    Artif Organs; 2007 Dec; 31(12):869-79. PubMed ID: 18039271
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modeling rough stenoses by an immersed-boundary method.
    Yakhot A; Grinberg L; Nikitin N
    J Biomech; 2005 May; 38(5):1115-27. PubMed ID: 15797593
    [TBL] [Abstract][Full Text] [Related]  

  • 46. New laboratory technique measures projected dynamic area of prosthetic heart valves.
    Scotten LN; Walker DK
    J Heart Valve Dis; 2004 Jan; 13(1):120-32; discussion 132-3. PubMed ID: 14765850
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A patient-specific aortic valve model based on moving resistive immersed implicit surfaces.
    Fedele M; Faggiano E; Dedè L; Quarteroni A
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1779-1803. PubMed ID: 28593469
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Numerical simulation of steady flow in a model of the aortic bifurcation.
    Thiriet M; Pares C; Saltel E; Hecht F
    J Biomech Eng; 1992 Feb; 114(1):40-9. PubMed ID: 1491585
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A robust and efficient valve model based on resistive immersed surfaces.
    Astorino M; Hamers J; Shadden SC; Gerbeau JF
    Int J Numer Method Biomed Eng; 2012 Sep; 28(9):937-59. PubMed ID: 22941924
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanical equilibrium determines the fractal fiber architecture of aortic heart valve leaflets.
    Peskin CS; McQueen DM
    Am J Physiol; 1994 Jan; 266(1 Pt 2):H319-28. PubMed ID: 8304514
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Implicit Partitioned Cardiovascular Fluid-Structure Interaction of the Heart Cycle Using Non-newtonian Fluid Properties and Orthotropic Material Behavior.
    Muehlhausen MP; Janoske U; Oertel H
    Cardiovasc Eng Technol; 2015 Mar; 6(1):8-18. PubMed ID: 26577098
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A continuum theory of Allen's frontal contraction model of amoeboid pseudopodium extension.
    Odell GM
    J Mechanochem Cell Motil; 1977 Mar; 4(1):1-13. PubMed ID: 753896
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computational fluid dynamics of blood flow in an idealized left human heart.
    Dedè L; Menghini F; Quarteroni A
    Int J Numer Method Biomed Eng; 2021 Nov; 37(11):e3287. PubMed ID: 31816195
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A mathematical model that integrates cardiac electrophysiology, mechanics, and fluid dynamics: Application to the human left heart.
    Bucelli M; Zingaro A; Africa PC; Fumagalli I; Dede' L; Quarteroni A
    Int J Numer Method Biomed Eng; 2023 Mar; 39(3):e3678. PubMed ID: 36579792
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The mechanical bidomain model of cardiac muscle with curving fibers.
    Sharma K; Roth BJ
    Phys Biol; 2018 Sep; 15(6):066012. PubMed ID: 30113315
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dissipative forces for Lagrangian models in computational fluid dynamics and application to smoothed-particle hydrodynamics.
    Violeau D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036705. PubMed ID: 19905244
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Equations for estimating muscle fiber stress in the left ventricular wall.
    Rabben SI; Irgens F; Angelsen B
    Heart Vessels; 1999; 14(4):189-96. PubMed ID: 10776823
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Augmented resistive immersed surfaces valve model for the simulation of cardiac hemodynamics with isovolumetric phases.
    This A; Boilevin-Kayl L; Fernández MA; Gerbeau JF
    Int J Numer Method Biomed Eng; 2020 Mar; 36(3):e3223. PubMed ID: 31206245
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fully coupled fluid-electro-mechanical model of the human heart for supercomputers.
    Santiago A; Aguado-Sierra J; Zavala-Aké M; Doste-Beltran R; Gómez S; Arís R; Cajas JC; Casoni E; Vázquez M
    Int J Numer Method Biomed Eng; 2018 Dec; 34(12):e3140. PubMed ID: 30117302
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Giving form to the function of the heart: embedding cellular models in an anatomical framework.
    Smith N; Hunter P
    Jpn J Physiol; 2004 Dec; 54(6):541-4. PubMed ID: 15760486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.