BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 14870682)

  • 1. Fluorescence recovery after photobleaching (FRAP) methods for visualizing protein dynamics in living mammalian cell nuclei.
    Stavreva DA; McNally JG
    Methods Enzymol; 2004; 375():443-55. PubMed ID: 14870682
    [No Abstract]   [Full Text] [Related]  

  • 2. Measuring dynamics of nuclear proteins by photobleaching.
    Dundr M; Misteli T
    Curr Protoc Cell Biol; 2003 May; Chapter 13():Unit 13.5. PubMed ID: 18228420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence recovery after photobleaching (FRAP) to study nuclear protein dynamics in living cells.
    van Royen ME; Farla P; Mattern KA; Geverts B; Trapman J; Houtsmuller AB
    Methods Mol Biol; 2009; 464():363-85. PubMed ID: 18951195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confocal fluorescence recovery after photobleaching of green fluorescent protein in solution.
    Pucadyil TJ; Chattopadhyay A
    J Fluoresc; 2006 Jan; 16(1):87-94. PubMed ID: 16397826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Live-cell nucleocytoplasmic protein shuttle assay utilizing laser confocal microscopy and FRAP.
    Howell JL; Truant R
    Biotechniques; 2002 Jan; 32(1):80-2, 84, 86-7. PubMed ID: 11808703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence recovery after photobleaching (FRAP) with a focus on F-actin.
    Hardy LR
    Curr Protoc Neurosci; 2012; Chapter 2():Unit 2.17. PubMed ID: 23093350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revealing protein dynamics by photobleaching techniques.
    van Drogen F; Peter M
    Methods Mol Biol; 2004; 284():287-306. PubMed ID: 15173624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoswitching-free FRAP analysis with a genetically encoded fluorescent tag.
    Morisaki T; McNally JG
    PLoS One; 2014; 9(9):e107730. PubMed ID: 25233348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A generalization of theory for two-dimensional fluorescence recovery after photobleaching applicable to confocal laser scanning microscopes.
    Kang M; Day CA; Drake K; Kenworthy AK; DiBenedetto E
    Biophys J; 2009 Sep; 97(5):1501-11. PubMed ID: 19720039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy.
    Phair RD; Gorski SA; Misteli T
    Methods Enzymol; 2004; 375():393-414. PubMed ID: 14870680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nonfitting method using a spatial sine window transform for inhomogeneous effective-diffusion measurements by FRAP.
    Orlova DY; Bártová E; Maltsev VP; Kozubek S; Chernyshev AV
    Biophys J; 2011 Jan; 100(2):507-16. PubMed ID: 21244847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring immune receptor mobility by fluorescence recovery after photobleaching.
    Silver K; Harrison RE
    Methods Mol Biol; 2011; 748():155-67. PubMed ID: 21701973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From fixed to FRAP: measuring protein mobility and activity in living cells.
    Reits EA; Neefjes JJ
    Nat Cell Biol; 2001 Jun; 3(6):E145-7. PubMed ID: 11389456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel in situ assay for the identification and characterization of soluble nuclear mobility factors.
    Elbi C; Walker DA; Lewis M; Romero G; Sullivan WP; Toft DO; Hager GL; DeFranco DB
    Sci STKE; 2004 Jun; 2004(238):pl10. PubMed ID: 15213337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization and mobility of bacterial proteins by confocal microscopy and fluorescence recovery after photobleaching.
    Mullineaux CW
    Methods Mol Biol; 2007; 390():3-15. PubMed ID: 17951677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photobleaching microscopy reveals the dynamics of mRNA-binding proteins inside live cell nuclei.
    Braga J; Rino J; Carmo-Fonseca M
    Prog Mol Subcell Biol; 2004; 35():119-34. PubMed ID: 15113082
    [No Abstract]   [Full Text] [Related]  

  • 17. Application of simple photobleaching microscopy techniques for the determination of the balance between anterograde and retrograde axonal transport.
    Iliev AI; Wouters FS
    J Neurosci Methods; 2007 Mar; 161(1):39-46. PubMed ID: 17123628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyses of the Dynamic Properties of Nuclear Lamins by Fluorescence Recovery After Photobleaching (FRAP) and Fluorescence Correlation Spectroscopy (FCS).
    Takeshi S; Pack CG; Goldman RD
    Methods Mol Biol; 2016; 1411():99-111. PubMed ID: 27147036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring transcription dynamics in living cells using a photobleaching approach.
    Hochberg H; Brody Y; Shav-Tal Y
    Methods; 2017 May; 120():58-64. PubMed ID: 28434903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Fluorescence Recovery After Photobleaching (FRAP) to Study Dynamics of the Structural Maintenance of Chromosome (SMC) Complex In Vivo.
    Badrinarayanan A; Leake MC
    Methods Mol Biol; 2016; 1431():37-46. PubMed ID: 27283300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.