These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 14870684)

  • 1. RNA fluorescence in situ hybridization tagging and recovery of associated proteins to analyze in vivo chromatin interactions.
    Chakalova L; Carter D; Fraser P
    Methods Enzymol; 2004; 375():479-93. PubMed ID: 14870684
    [No Abstract]   [Full Text] [Related]  

  • 2. Combining Low Temperature Fluorescence DNA-Hybridization, Immunostaining, and Super-Resolution Localization Microscopy for Nano-Structure Analysis of ALU Elements and Their Influence on Chromatin Structure.
    Krufczik M; Sievers A; Hausmann A; Lee JH; Hildenbrand G; Schaufler W; Hausmann M
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28481278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The perichromatin region: a functional compartment in the nucleus that determines large-scale chromatin folding.
    Fakan S; van Driel R
    Semin Cell Dev Biol; 2007 Oct; 18(5):676-81. PubMed ID: 17920313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined immunofluorescence, RNA fluorescent in situ hybridization, and DNA fluorescent in situ hybridization to study chromatin changes, transcriptional activity, nuclear organization, and X-chromosome inactivation.
    Chaumeil J; Augui S; Chow JC; Heard E
    Methods Mol Biol; 2008; 463():297-308. PubMed ID: 18951174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preservation of large-scale chromatin structure in FISH experiments.
    Hepperger C; Otten S; von Hase J; Dietzel S
    Chromosoma; 2007 Apr; 116(2):117-33. PubMed ID: 17119992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Higher order chromatin architecture in the cell nucleus: on the way from structure to function.
    Cremer T; Küpper K; Dietzel S; Fakan S
    Biol Cell; 2004 Oct; 96(8):555-67. PubMed ID: 15519691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing Long Noncoding RNAs on Chromatin.
    Hinten M; Maclary E; Gayen S; Harris C; Kalantry S
    Methods Mol Biol; 2016; 1402():147-164. PubMed ID: 26721489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic changes in the higher-level chromatin organization of specific sequences revealed by in situ hybridization to nuclear halos.
    Gerdes MG; Carter KC; Moen PT; Lawrence JB
    J Cell Biol; 1994 Jul; 126(2):289-304. PubMed ID: 8034736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH).
    Solovei I; Cavallo A; Schermelleh L; Jaunin F; Scasselati C; Cmarko D; Cremer C; Fakan S; Cremer T
    Exp Cell Res; 2002 May; 276(1):10-23. PubMed ID: 11978004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome organization in the nucleus: From dynamic measurements to a functional model.
    Vivante A; Brozgol E; Bronshtein I; Garini Y
    Methods; 2017 Jul; 123():128-137. PubMed ID: 28161540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial distribution of sperm-derived chromatin in zygotes determined by fluorescence in situ hybridization.
    Brandriff BF; Gordon LA
    Mutat Res; 1992 Dec; 296(1-2):33-42. PubMed ID: 1279406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualizing RNA molecules inside the nucleus of living cells.
    Dirks RW; Molenaar C; Tanke HJ
    Methods; 2003 Jan; 29(1):51-7. PubMed ID: 12543071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of growing RNA molecules to the nuclear transcripts foci observed by FISH.
    Jolly C; Robert-Nicoud M; Vourc'h C
    Exp Cell Res; 1998 Jan; 238(1):299-304. PubMed ID: 9457084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing the detection of nascent transcripts by RNA fluorescence in situ hybridization.
    van Raamsdonk CD; Tilghman SM
    Nucleic Acids Res; 2001 Apr; 29(8):E42-2. PubMed ID: 11292856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Imaging of mRNA nuclear export in a living cell].
    Tadakuma H; Funatsu T; Tani T
    Tanpakushitsu Kakusan Koso; 2003 Mar; 48(4 Suppl):421-9. PubMed ID: 12696150
    [No Abstract]   [Full Text] [Related]  

  • 16. Coupling between chromosome intermingling and gene regulation during cellular differentiation.
    Wang Y; Jain N; Nagarajan M; Maharana S; Iyer KV; Talwar S; Shivashankar GV
    Methods; 2017 Jul; 123():66-75. PubMed ID: 28554525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous detection of nuclear and cytoplasmic RNA variants utilizing Stellaris® RNA fluorescence in situ hybridization in adherent cells.
    Coassin SR; Orjalo AV; Semaan SJ; Johansson HE
    Methods Mol Biol; 2014; 1211():189-99. PubMed ID: 25218386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tethering RNA to chromatin for fluorescence microscopy based analysis of nuclear organization.
    Pankert T; Jegou T; Caudron-Herger M; Rippe K
    Methods; 2017 Jul; 123():89-101. PubMed ID: 28213279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence In Situ Hybridization (FISH) and Immunolabeling on 3D Preserved Nuclei.
    Bey TD; Koini M; Fransz P
    Methods Mol Biol; 2018; 1675():467-480. PubMed ID: 29052208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of nuclear transcript detection by FISH and combination with fluorescence immunocytochemical detection of transcription factors.
    Jolly C; Mongelard F; Robert-Nicoud M; Vourc'h C
    J Histochem Cytochem; 1997 Dec; 45(12):1585-92. PubMed ID: 9389761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.