These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 14870713)

  • 1. Differential theory: application to highly conducting gratings.
    Popov E; Chernov B; Nevière M; Bonod N
    J Opt Soc Am A Opt Image Sci Vis; 2004 Feb; 21(2):199-206. PubMed ID: 14870713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the differential theory of lamellar gratings made of highly conducting materials.
    Watanabe K
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jan; 23(1):69-72. PubMed ID: 16478061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the numerical artifacts in differential analysis of highly conducting gratings.
    Khavasi A; Mehrany K; Jazayeri AH
    Opt Lett; 2008 Jan; 33(2):159-61. PubMed ID: 18197225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical integration schemes used on the differential theory for anisotropic gratings.
    Watanabe K
    J Opt Soc Am A Opt Image Sci Vis; 2002 Nov; 19(11):2245-52. PubMed ID: 12413126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential theory of gratings made of anisotropic materials.
    Watanabe K; Petit R; Nevière M
    J Opt Soc Am A Opt Image Sci Vis; 2002 Feb; 19(2):325-34. PubMed ID: 11822595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical study on the spectroscopic ellipsometry of lamellar gratings made of lossless dielectric materials.
    Watanabe K; Pistora J; Foldyna M; Postava K; Vlcek J
    J Opt Soc Am A Opt Image Sci Vis; 2005 Apr; 22(4):745-51. PubMed ID: 15839282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast convergent Fourier modal method for the analysis of periodic arrays of graphene ribbons.
    Khavasi A
    Opt Lett; 2013 Aug; 38(16):3009-12. PubMed ID: 24104634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grating theory: new equations in Fourier space leading to fast converging results for TM polarization.
    Popov E; Nevière M
    J Opt Soc Am A Opt Image Sci Vis; 2000 Oct; 17(10):1773-84. PubMed ID: 11028525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromagnetic scattering of two-dimensional surface-relief dielectric gratings.
    Han ST; Tsao YL; Walser RM; Becker MF
    Appl Opt; 1992 May; 31(13):2343-52. PubMed ID: 20720899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Massive Enhancement of Optical Transmission across a Thin Metal Film via Wave Vector Matching in Grating-Coupled Surface Plasmon Resonance.
    Mahmood R; Johnson MB; Hillier AC
    Anal Chem; 2019 Jul; 91(13):8350-8357. PubMed ID: 31140785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formulation for electromagnetic scattering and propagation through grating stacks of metallic and dielectric cylinders for photonic crystal calculations. Part I. Method.
    Botten LC; Nicorovici NA; Asatryan AA; McPhedran RC; de Sterke CM; Robinson PA
    J Opt Soc Am A Opt Image Sci Vis; 2000 Dec; 17(12):2165-76. PubMed ID: 11140475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normal vector method for convergence improvement using the RCWA for crossed gratings.
    Schuster T; Ruoff J; Kerwien N; Rafler S; Osten W
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2880-90. PubMed ID: 17767260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constrained least squares Fourier modal method for computing scattering from metallic binary gratings.
    Gundu KM; Mafi A
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):2375-80. PubMed ID: 21045901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boundary integral equation Neumann-to-Dirichlet map method for gratings in conical diffraction.
    Wu Y; Lu YY
    J Opt Soc Am A Opt Image Sci Vis; 2011 Jun; 28(6):1191-6. PubMed ID: 21643404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential theory for diffraction gratings: a new formulation for TM polarization with rapid convergence.
    Popov E; Nevière M
    Opt Lett; 2000 May; 25(9):598-600. PubMed ID: 18064122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modal analysis and suppression of the Fourier modal method instabilities in highly conductive gratings.
    Lyndin NM; Parriaux O; Tishchenko AV
    J Opt Soc Am A Opt Image Sci Vis; 2007 Dec; 24(12):3781-8. PubMed ID: 18059931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified rigorous coupled-wave analysis for multi-layer deformable gratings with arbitrary profiles and materials.
    Zhang C; Hu F; Fan J
    J Opt Soc Am A Opt Image Sci Vis; 2022 Dec; 39(12):2186-2192. PubMed ID: 36520733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VO(2) based waveguide-mode plasmonic nano-gratings for optical switching.
    Sharma Y; Tiruveedhula VA; Muth JF; Dhawan A
    Opt Express; 2015 Mar; 23(5):5822-49. PubMed ID: 25836811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rigorous and efficient grating-analysis method made easy for optical engineers.
    Li L; Chandezon J; Granet G; Plumey JP
    Appl Opt; 1999 Jan; 38(2):304-13. PubMed ID: 18305616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formulation for electromagnetic scattering and propagation through grating stacks of metallic and dielectric cylinders for photonic crystal calculations. Part II. Properties and implementation.
    Botten LC; Nicorovici NA; Asatryan AA; McPhedran RC; de Sterke CM; Robinson PA
    J Opt Soc Am A Opt Image Sci Vis; 2000 Dec; 17(12):2177-90. PubMed ID: 11140476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.