BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 14870943)

  • 1. Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium.
    Bumgardner JD; Wiser R; Elder SH; Jouett R; Yang Y; Ong JL
    J Biomater Sci Polym Ed; 2003; 14(12):1401-9. PubMed ID: 14870943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants.
    Bumgardner JD; Wiser R; Gerard PD; Bergin P; Chestnutt B; Marin M; Ramsey V; Elder SH; Gilbert JA
    J Biomater Sci Polym Ed; 2003; 14(5):423-38. PubMed ID: 12807145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein adsorption on titanium surfaces and their effect on osteoblast attachment.
    Yang Y; Cavin R; Ong JL
    J Biomed Mater Res A; 2003 Oct; 67(1):344-9. PubMed ID: 14517894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoblast response to phospholipid modified titanium surface.
    Satsangi A; Satsangi N; Glover R; Satsangi RK; Ong JL
    Biomaterials; 2003 Nov; 24(25):4585-9. PubMed ID: 12951001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoblast precursor cell attachment on heat-treated calcium phosphate coatings.
    Yang Y; Bumgardner JD; Cavin R; Carnes DL; Ong JL
    J Dent Res; 2003 Jun; 82(6):449-53. PubMed ID: 12766197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of chemically modified titanium surfaces on protein adsorption and osteoblast precursor cell behavior.
    Protivínský J; Appleford M; Strnad J; Helebrant A; Ong JL
    Int J Oral Maxillofac Implants; 2007; 22(4):542-50. PubMed ID: 17929514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced osteoblast response to hydrophilic strontium and/or phosphate ions-incorporated titanium oxide surfaces.
    Park JW; Kim YJ; Jang JH
    Clin Oral Implants Res; 2010 Apr; 21(4):398-408. PubMed ID: 20128830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultraviolet light treatment for the restoration of age-related degradation of titanium bioactivity.
    Hori N; Ueno T; Suzuki T; Yamada M; Att W; Okada S; Ohno A; Aita H; Kimoto K; Ogawa T
    Int J Oral Maxillofac Implants; 2010; 25(1):49-62. PubMed ID: 20209187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects.
    Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD
    Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osseointegration of chitosan coated porous titanium alloy implant by reactive oxygen species-mediated activation of the PI3K/AKT pathway under diabetic conditions.
    Li X; Ma XY; Feng YF; Ma ZS; Wang J; Ma TC; Qi W; Lei W; Wang L
    Biomaterials; 2015 Jan; 36():44-54. PubMed ID: 25308520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The promotion of osteointegration under diabetic conditions using chitosan/hydroxyapatite composite coating on porous titanium surfaces.
    Ma XY; Feng YF; Ma ZS; Li X; Wang J; Wang L; Lei W
    Biomaterials; 2014 Aug; 35(26):7259-70. PubMed ID: 24912815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonvolatile buffer coating of titanium to prevent its biological aging and for drug delivery.
    Suzuki T; Kubo K; Hori N; Yamada M; Kojima N; Sugita Y; Maeda H; Ogawa T
    Biomaterials; 2010 Jun; 31(18):4818-28. PubMed ID: 20350765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of novel silane coatings on titanium implant surfaces.
    Matinlinna JP; Tsoi JK; de Vries J; Busscher HJ
    Clin Oral Implants Res; 2013 Jun; 24(6):688-97. PubMed ID: 22725840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of osteoblast behavior on TiNxOy coatings by altering the N/O stoichiometry while maintaining a high thrombogenic potential.
    Moussa M; Fontana P; Hamdan F; Cattani-Lorente M; Scherrer SS; Banakh O; Wiskott AH; Durual S
    J Biomater Appl; 2016 Mar; 30(8):1219-29. PubMed ID: 26637444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of modification of titanium surfaces to graft poly(ethylene glycol)methacrylate-arginine-glycine-aspartic polymer brushes on bacterial adhesion and osteoblast cell attachment].
    Liu D; Gong YJ; Xiao Q; Li ZA
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 Aug; 51(8):491-5. PubMed ID: 27511041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RGD-containing peptide GCRGYGRGDSPG reduces enhancement of osteoblast differentiation by poly(L-lysine)-graft-poly(ethylene glycol)-coated titanium surfaces.
    Tosatti S; Schwartz Z; Campbell C; Cochran DL; VandeVondele S; Hubbell JA; Denzer A; Simpson J; Wieland M; Lohmann CH; Textor M; Boyan BD
    J Biomed Mater Res A; 2004 Mar; 68(3):458-72. PubMed ID: 14762925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalisation of Ti6Al4V and hydroxyapatite surfaces with combined peptides based on KKLPDA and EEEEEEEE peptides.
    Rodriguez GM; Bowen J; Grossin D; Ben-Nissan B; Stamboulis A
    Colloids Surf B Biointerfaces; 2017 Dec; 160():154-160. PubMed ID: 28922634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of heat-treated titanium surfaces on protein adsorption and osteoblast precursor cell initial attachment.
    Kern T; Yang Y; Glover R; Ong JL
    Implant Dent; 2005 Mar; 14(1):70-6. PubMed ID: 15764948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation.
    Lv H; Chen Z; Yang X; Cen L; Zhang X; Gao P
    J Dent; 2014 Nov; 42(11):1464-72. PubMed ID: 24930872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of VEGF-loaded chitosan coatings.
    Leedy MR; Jennings JA; Haggard WO; Bumgardner JD
    J Biomed Mater Res A; 2014 Mar; 102(3):752-9. PubMed ID: 23564543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.