These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 14871106)

  • 1. Expanding the substrate repertoire of a DNA polymerase by directed evolution.
    Fa M; Radeghieri A; Henry AA; Romesberg FE
    J Am Chem Soc; 2004 Feb; 126(6):1748-54. PubMed ID: 14871106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution of DNA polymerases with novel activities.
    Henry AA; Romesberg FE
    Curr Opin Biotechnol; 2005 Aug; 16(4):370-7. PubMed ID: 16006114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed evolution of novel polymerases.
    Holmberg RC; Henry AA; Romesberg FE
    Biomol Eng; 2005 Jun; 22(1-3):39-49. PubMed ID: 15857782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of a T7 RNA polymerase variant that transcribes 2'-O-methyl RNA.
    Chelliserrykattil J; Ellington AD
    Nat Biotechnol; 2004 Sep; 22(9):1155-60. PubMed ID: 15300257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efforts to expand the genetic code.
    Romesberg FE
    Nucleic Acids Symp Ser (Oxf); 2005; (49):89-90. PubMed ID: 17150647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplex-PCR-based recombination as a novel high-fidelity method for directed evolution.
    Eggert T; Funke SA; Rao NM; Acharya P; Krumm H; Reetz MT; Jaeger KE
    Chembiochem; 2005 Jun; 6(6):1062-7. PubMed ID: 15880674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrahigh-throughput FACS-based screening for directed enzyme evolution.
    Yang G; Withers SG
    Chembiochem; 2009 Nov; 10(17):2704-15. PubMed ID: 19780076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro.
    Wang Y; Prosen DE; Mei L; Sullivan JC; Finney M; Vander Horn PB
    Nucleic Acids Res; 2004; 32(3):1197-207. PubMed ID: 14973201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial engineering to enhance amylosucrase performance: construction, selection, and screening of variant libraries for increased activity.
    van der Veen BA; Potocki-Véronèse G; Albenne C; Joucla G; Monsan P; Remaud-Simeon M
    FEBS Lett; 2004 Feb; 560(1-3):91-7. PubMed ID: 14988004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chimeric thermostable DNA polymerases with reverse transcriptase and attenuated 3'-5' exonuclease activity.
    Schönbrunner NJ; Fiss EH; Budker O; Stoffel S; Sigua CL; Gelfand DH; Myers TW
    Biochemistry; 2006 Oct; 45(42):12786-95. PubMed ID: 17042497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical biology of DNA polymerases: from selectivity to new functions.
    Marx A; Summerer D; Sauter KB; Gloeckner C; Rudinger NZ
    Nucleic Acids Symp Ser (Oxf); 2007; (51):81-2. PubMed ID: 18029596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme engineering for enantioselectivity: from trial-and-error to rational design?
    Otten LG; Hollmann F; Arends IW
    Trends Biotechnol; 2010 Jan; 28(1):46-54. PubMed ID: 19913316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed evolution of a thermophilic beta-glucosidase for cellulosic bioethanol production.
    Hardiman E; Gibbs M; Reeves R; Bergquist P
    Appl Biochem Biotechnol; 2010 May; 161(1-8):301-12. PubMed ID: 19834652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed polymerase evolution.
    Chen T; Romesberg FE
    FEBS Lett; 2014 Jan; 588(2):219-29. PubMed ID: 24211837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replacing 32 proline residues by a noncanonical amino acid results in a highly active DNA polymerase.
    Holzberger B; Marx A
    J Am Chem Soc; 2010 Nov; 132(44):15708-13. PubMed ID: 20961065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phage display as a tool for the directed evolution of enzymes.
    Fernandez-Gacio A; Uguen M; Fastrez J
    Trends Biotechnol; 2003 Sep; 21(9):408-14. PubMed ID: 12948674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altering the sequence specificity of HaeIII methyltransferase by directed evolution using in vitro compartmentalization.
    Cohen HM; Tawfik DS; Griffiths AD
    Protein Eng Des Sel; 2004 Jan; 17(1):3-11. PubMed ID: 14985532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of protease variants exhibiting altered substrate specificity.
    Sellamuthu S; Shin BH; Lee ES; Rho SH; Hwang W; Lee YJ; Han HE; Kim JI; Park WJ
    Biochem Biophys Res Commun; 2008 Jun; 371(1):122-6. PubMed ID: 18413229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro selection of restriction endonucleases by in vitro compartmentalization.
    Doi N; Kumadaki S; Oishi Y; Matsumura N; Yanagawa H
    Nucleic Acids Res; 2004 Jul; 32(12):e95. PubMed ID: 15247328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective selection system for experimental evolution of random polypeptides towards DNA-binding protein.
    Nakashima T; Toyota H; Urabe I; Yomo T
    J Biosci Bioeng; 2007 Feb; 103(2):155-60. PubMed ID: 17368398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.