These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 14871152)

  • 41. Purification of nitrogenase proteins.
    Wiig JA; Lee CC; Fay AW; Hu Y; Ribbe MW
    Methods Mol Biol; 2011; 766():93-103. PubMed ID: 21833863
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The consequences of an interstitial N atom in the FeMo cofactor of nitrogenase.
    Dance I
    Chem Commun (Camb); 2003 Feb; (3):324-5. PubMed ID: 12613594
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fluorine-19 chemical shifts as probes of the structure and reactivity of the iron-molybdenum cofactor of nitrogenase.
    Conradson SD; Burgess BK; Holm RH
    J Biol Chem; 1988 Sep; 263(27):13743-9. PubMed ID: 2843534
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative geometric descriptions of the belt iron atoms of the iron-molybdenum cofactor of nitrogenase and synthetic iron(II) model complexes.
    Vela J; Cirera J; Smith JM; Lachicotte RJ; Flaschenriem CJ; Alvarez S; Holland PL
    Inorg Chem; 2007 Jan; 46(1):60-71. PubMed ID: 17198413
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure and Reactivity of an Asymmetric Synthetic Mimic of Nitrogenase Cofactor.
    Tanifuji K; Sickerman N; Lee CC; Nagasawa T; Miyazaki K; Ohki Y; Tatsumi K; Hu Y; Ribbe MW
    Angew Chem Int Ed Engl; 2016 Dec; 55(50):15633-15636. PubMed ID: 27862765
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The clusters of nitrogenase: synthetic methodology in the construction of weak-field clusters.
    Lee SC; Holm RH
    Chem Rev; 2004 Feb; 104(2):1135-58. PubMed ID: 14871151
    [No Abstract]   [Full Text] [Related]  

  • 47. Cluster assembly in nitrogenase.
    Sickerman NS; Rettberg LA; Lee CC; Hu Y; Ribbe MW
    Essays Biochem; 2017 May; 61(2):271-279. PubMed ID: 28487403
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ENDOR characterization of a synthetic diiron hydrazido complex as a model for nitrogenase intermediates.
    Lees NS; McNaughton RL; Gregory WV; Holland PL; Hoffman BM
    J Am Chem Soc; 2008 Jan; 130(2):546-55. PubMed ID: 18092774
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Revisiting the Mössbauer Isomer Shifts of the FeMoco Cluster of Nitrogenase and the Cofactor Charge.
    Bjornsson R; Neese F; DeBeer S
    Inorg Chem; 2017 Feb; 56(3):1470-1477. PubMed ID: 28071903
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The interstitial atom of the nitrogenase FeMo-cofactor: ENDOR and ESEEM evidence that it is not a nitrogen.
    Yang TC; Maeser NK; Laryukhin M; Lee HI; Dean DR; Seefeldt LC; Hoffman BM
    J Am Chem Soc; 2005 Sep; 127(37):12804-5. PubMed ID: 16159266
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On the nature of anaerobic oxidative damage to the Mo-Fe protein of Klebsiella pneumoniae nitrogenase.
    O'Donnell MJ; Smith BE
    FEBS Lett; 1980 Nov; 120(2):251-4. PubMed ID: 7002616
    [No Abstract]   [Full Text] [Related]  

  • 52. Activation and protonation of dinitrogen at the FeMo cofactor of nitrogenase.
    Kästner J; Hemmen S; Blöchl PE
    J Chem Phys; 2005 Aug; 123(7):074306. PubMed ID: 16229569
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modeling the nitrogenase FeMo cofactor with high-spin Fe8S9X+ (X=N, C) clusters. Is the first step for N2 reduction to NH3 a concerted dihydrogen transfer?
    McKee ML
    J Comput Chem; 2007 Jun; 28(8):1342-56. PubMed ID: 17318945
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evidence for a synergistic salt-protein interaction -- complex patterns of activation vs. inhibition of nitrogenase by salt.
    Wilson PE; Nyborg AC; Kenealey J; Lowery TJ; Crawford K; King CR; Engan AJ; Johnson JL; Watt GD
    Biophys Chem; 2006 Aug; 122(3):184-94. PubMed ID: 16603308
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nitrogenase structure: where to now?
    Orme-Johnson WH
    Science; 1992 Sep; 257(5077):1639-40. PubMed ID: 1529351
    [No Abstract]   [Full Text] [Related]  

  • 56. Mechanistic significance of the preparatory migration of hydrogen atoms around the FeMo-co active site of nitrogenase.
    Dance I
    Biochemistry; 2006 May; 45(20):6328-40. PubMed ID: 16700544
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An atomic-level mechanism for molybdenum nitrogenase. Part 2. Proton reduction, inhibition of dinitrogen reduction by dihydrogen, and the HD formation reaction.
    Durrant MC
    Biochemistry; 2002 Nov; 41(47):13946-55. PubMed ID: 12437351
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differentiation of acetylene-reduction sites by stereoselective proton addition during Azotobacter vinelandii nitrogenase-catalyzed C2D2 reduction.
    Han J; Newton WE
    Biochemistry; 2004 Mar; 43(10):2947-56. PubMed ID: 15005631
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nitrogenase: a nucleotide-dependent molecular switch.
    Howard JB; Rees DC
    Annu Rev Biochem; 1994; 63():235-64. PubMed ID: 7979238
    [No Abstract]   [Full Text] [Related]  

  • 60. Establishing a Thermodynamic Landscape for the Active Site of Mo-Dependent Nitrogenase.
    Hickey DP; Cai R; Yang ZY; Grunau K; Einsle O; Seefeldt LC; Minteer SD
    J Am Chem Soc; 2019 Oct; 141(43):17150-17157. PubMed ID: 31577428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.