BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 14871486)

  • 1. Rhodoquinone reaction site of mitochondrial complex I, in parasitic helminth, Ascaris suum.
    Yamashita T; Ino T; Miyoshi H; Sakamoto K; Osanai A; Nakamaru-Ogiso E; Kita K
    Biochim Biophys Acta; 2004 Feb; 1608(2-3):97-103. PubMed ID: 14871486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of mitochondrial quinol-fumarate reductase from the parasitic nematode Ascaris suum.
    Shimizu H; Osanai A; Sakamoto K; Inaoka DK; Shiba T; Harada S; Kita K
    J Biochem; 2012 Jun; 151(6):589-92. PubMed ID: 22577165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of electron-transfer flavoprotein: rhodoquinone oxidoreductase from anaerobic mitochondria of the adult parasitic nematode, Ascaris suum.
    Ma YC; Funk M; Dunham WR; Komuniecki R
    J Biol Chem; 1993 Sep; 268(27):20360-5. PubMed ID: 8376393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodoquinone is synthesized de novo by Fasciola hepatica.
    Van Hellemond JJ; Luijten M; Flesch FM; Gaasenbeek CP; Tielens AG
    Mol Biochem Parasitol; 1996 Nov; 82(2):217-26. PubMed ID: 8946387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction mechanism of single subunit NADH-ubiquinone oxidoreductase (Ndi1) from Saccharomyces cerevisiae: evidence for a ternary complex mechanism.
    Yang Y; Yamashita T; Nakamaru-Ogiso E; Hashimoto T; Murai M; Igarashi J; Miyoshi H; Mori N; Matsuno-Yagi A; Yagi T; Kosaka H
    J Biol Chem; 2011 Mar; 286(11):9287-97. PubMed ID: 21220430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the reaction of decoupling ubiquinone with bovine mitochondrial respiratory complex I.
    Masuya T; Okuda K; Murai M; Miyoshi H
    Biosci Biotechnol Biochem; 2016 Aug; 80(8):1464-9. PubMed ID: 27140857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Change of subunit composition of mitochondrial complex II (succinate-ubiquinone reductase/quinol-fumarate reductase) in Ascaris suum during the migration in the experimental host.
    Iwata F; Shinjyo N; Amino H; Sakamoto K; Islam MK; Tsuji N; Kita K
    Parasitol Int; 2008 Mar; 57(1):54-61. PubMed ID: 17933581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental changes in the respiratory chain of Ascaris mitochondria.
    Takamiya S; Kita K; Wang H; Weinstein PP; Hiraishi A; Oya H; Aoki T
    Biochim Biophys Acta; 1993 Feb; 1141(1):65-74. PubMed ID: 8435436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADH→NAD⁺ Transhydrogenation in Adult Ascaris suum Mitochondria.
    Holowiecki A; Fioravanti CF
    J Parasitol; 2015 Jun; 101(3):358-63. PubMed ID: 25587625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free-living nematodes Caenorhabditis elegans possess in their mitochondria an additional rhodoquinone, an essential component of the eukaryotic fumarate reductase system.
    Takamiya S; Matsui T; Taka H; Murayama K; Matsuda M; Aoki T
    Arch Biochem Biophys; 1999 Nov; 371(2):284-9. PubMed ID: 10545216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insight into the type-II mitochondrial NADH dehydrogenases.
    Feng Y; Li W; Li J; Wang J; Ge J; Xu D; Liu Y; Wu K; Zeng Q; Wu JW; Tian C; Zhou B; Yang M
    Nature; 2012 Nov; 491(7424):478-82. PubMed ID: 23086143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of dihydrolipoyl dehydrogenase (E3) and a novel E3-binding protein in the NADH sensitivity of the pyruvate dehydrogenase complex from anaerobic mitochondria of the parasitic nematode, Ascaris suum.
    Harmych S; Arnette R; Komuniecki R
    Mol Biochem Parasitol; 2002; 125(1-2):135-46. PubMed ID: 12467981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Inhibitory effect of bithionol on NADH-fumarate reductase in ascarides].
    Ikuma K; Makimura M; Murakoshi Y
    Yakugaku Zasshi; 1993 Sep; 113(9):663-9. PubMed ID: 8229665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stage-specific isoforms of complex II (succinate-ubiquinone oxidoreductase) in mitochondria from the parasitic nematode, Ascaris suum.
    Saruta F; Kuramochi T; Nakamura K; Takamiya S; Yu Y; Aoki T; Sekimizu K; Kojima S; Kita K
    J Biol Chem; 1995 Jan; 270(2):928-32. PubMed ID: 7822332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of Synthetic Ubiquinone QT Catalyzed by Bovine Mitochondrial Complex I Is Decoupled from Proton Translocation.
    Okuda K; Murai M; Aburaya S; Aoki W; Miyoshi H
    Biochemistry; 2016 Jan; 55(3):470-81. PubMed ID: 26701224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Insights into the Molecular Design of Flutolanil Derivatives Targeted for Fumarate Respiration of Parasite Mitochondria.
    Inaoka DK; Shiba T; Sato D; Balogun EO; Sasaki T; Nagahama M; Oda M; Matsuoka S; Ohmori J; Honma T; Inoue M; Kita K; Harada S
    Int J Mol Sci; 2015 Jul; 16(7):15287-308. PubMed ID: 26198225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallization of mitochondrial rhodoquinol-fumarate reductase from the parasitic nematode Ascaris suum with the specific inhibitor flutolanil.
    Osanai A; Harada S; Sakamoto K; Shimizu H; Inaoka DK; Kita K
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Sep; 65(Pt 9):941-4. PubMed ID: 19724139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic NADH-fumarate reductase system is predominant in the respiratory chain of Echinococcus multilocularis, providing a novel target for the chemotherapy of alveolar echinococcosis.
    Matsumoto J; Sakamoto K; Shinjyo N; Kido Y; Yamamoto N; Yagi K; Miyoshi H; Nonaka N; Katakura K; Kita K; Oku Y
    Antimicrob Agents Chemother; 2008 Jan; 52(1):164-70. PubMed ID: 17954696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative splicing of
    Tan JH; Lautens M; Romanelli-Cedrez L; Wang J; Schertzberg MR; Reinl SR; Davis RE; Shepherd JN; Fraser AG; Salinas G
    Elife; 2020 Aug; 9():. PubMed ID: 32744503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodoquinone in bacteria and animals: Two distinct pathways for biosynthesis of this key electron transporter used in anaerobic bioenergetics.
    Salinas G; Langelaan DN; Shepherd JN
    Biochim Biophys Acta Bioenerg; 2020 Nov; 1861(11):148278. PubMed ID: 32735860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.