BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 14871493)

  • 1. Complex formation between ferredoxin and Synechococcus ferredoxin: nitrate oxidoreductase.
    Hirasawa M; Rubio LM; Griffin JL; Flores E; Herrero A; Li J; Kim SK; Hurley JK; Tollin G; Knaff DB
    Biochim Biophys Acta; 2004 Feb; 1608(2-3):155-62. PubMed ID: 14871493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Amino Acids at the Catalytic Site of a Ferredoxin-Dependent Cyanobacterial Nitrate Reductase.
    Srivastava AP; Allen JP; Vaccaro BJ; Hirasawa M; Alkul S; Johnson MK; Knaff DB
    Biochemistry; 2015 Sep; 54(36):5557-68. PubMed ID: 26305228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cyanobacterial narB gene encodes a ferredoxin-dependent nitrate reductase.
    Rubio LM; Herrero A; Flores E
    Plant Mol Biol; 1996 Feb; 30(4):845-50. PubMed ID: 8624415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical modification studies of tryptophan, arginine and lysine residues in maize chloroplast ferredoxin:sulfite oxidoreductase.
    Hirasawa M; Nakayama M; Kim SK; Hase T; Knaff DB
    Photosynth Res; 2005 Dec; 86(3):325-36. PubMed ID: 16307304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic studies of a ferredoxin-dependent cyanobacterial nitrate reductase.
    Srivastava AP; Knaff DB; Sétif P
    Biochemistry; 2014 Aug; 53(31):5092-101. PubMed ID: 25040124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ferredoxin-binding site of ferredoxin: Nitrite oxidoreductase. Differential chemical modification of the free enzyme and its complex with ferredoxin.
    Dose MM; Hirasawa M; Kleis-SanFrancisco S; Lew EL; Knaff DB
    Plant Physiol; 1997 Jul; 114(3):1047-53. PubMed ID: 9232882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the Ferredoxin-Binding Site of a Ferredoxin-Dependent Cyanobacterial Nitrate Reductase.
    Srivastava AP; Hardy EP; Allen JP; Vaccaro BJ; Johnson MK; Knaff DB
    Biochemistry; 2017 Oct; 56(41):5582-5592. PubMed ID: 28520412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lys75 of Anabaena ferredoxin-NADP+ reductase is a critical residue for binding ferredoxin and flavodoxin during electron transfer.
    Martínez-Júlvez M; Medina M; Hurley JK; Hafezi R; Brodie TB; Tollin G; Gómez-Moreno C
    Biochemistry; 1998 Sep; 37(39):13604-13. PubMed ID: 9753447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of four conserved basic amino acids in a ferredoxin-dependent cyanobacterial nitrate reductase.
    Srivastava AP; Hirasawa M; Bhalla M; Chung JS; Allen JP; Johnson MK; Tripathy JN; Rubio LM; Vaccaro B; Subramanian S; Flores E; Zabet-Moghaddam M; Stitle K; Knaff DB
    Biochemistry; 2013 Jun; 52(25):4343-53. PubMed ID: 23692082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of aromatic and acidic amino acids in the electron transfer reaction catalyzed by spinach ferredoxin-dependent glutamate synthase.
    Hirasawa M; Hurley JK; Salamon Z; Tollin G; Markley JL; Cheng H; Xia B; Knaff DB
    Biochim Biophys Acta; 1998 Feb; 1363(2):134-46. PubMed ID: 9507092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiol modification and site directed mutagenesis of the flavin domain of spinach NADH:nitrate reductase.
    Trimboli AJ; Quinn GB; Smith ET; Barber MJ
    Arch Biochem Biophys; 1996 Jul; 331(1):117-26. PubMed ID: 8660690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic forces involved in orienting Anabaena ferredoxin during binding to Anabaena ferredoxin:NADP+ reductase: site-specific mutagenesis, transient kinetic measurements, and electrostatic surface potentials.
    Hurley JK; Hazzard JT; Martínez-Júlvez M; Medina M; Gómez-Moreno C; Tollin G
    Protein Sci; 1999 Aug; 8(8):1614-22. PubMed ID: 10452605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arginyl groups involved in the binding of Anabaena ferredoxin--NADP+ reductase to NADP+ and to ferredoxin.
    Sancho J; Medina M; Gómez-Moreno C
    Eur J Biochem; 1990 Jan; 187(1):39-48. PubMed ID: 2105214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme kinetics, inhibitors, mutagenesis and electron paramagnetic resonance analysis of dual-affinity nitrate reductase in unicellular N(2)-fixing cyanobacterium Cyanothece sp. PCC 8801.
    Wang TH; Chen YH; Huang JY; Liu KC; Ke SC; Chu HA
    Plant Physiol Biochem; 2011 Nov; 49(11):1369-76. PubMed ID: 21821424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamate 94 of [2Fe-2S]-ferredoxins is important for efficient electron transfer in the 1:1 complex formed with ferredoxin-glutamate synthase (GltS) from Synechocystis sp. PCC 6803.
    Schmitz S; Navarro F; Kutzki CK; Florencio FJ; Böhme H
    Biochim Biophys Acta; 1996 Nov; 1277(1-2):135-40. PubMed ID: 8950376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of ferredoxin-NADP+ reductase from Anabaena with its substrates.
    Sancho J; Gómez-Moreno C
    Arch Biochem Biophys; 1991 Jul; 288(1):231-8. PubMed ID: 1910307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning a nitrate reductase for function. The first spectropotentiometric characterization of a bacterial assimilatory nitrate reductase reveals novel redox properties.
    Jepson BJ; Anderson LJ; Rubio LM; Taylor CJ; Butler CS; Flores E; Herrero A; Butt JN; Richardson DJ
    J Biol Chem; 2004 Jul; 279(31):32212-8. PubMed ID: 15166246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of amino acid residues of nitrite reductase from Anabaena sp. PCC 7120 involved in ferredoxin binding.
    Curdt I; Singh BB; Jakoby M; Hachtel W; Böhme H
    Biochim Biophys Acta; 2000 Nov; 1543(1):60-8. PubMed ID: 11087941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of spinach chloroplast ferredoxin-dependent nitrite reductase: spectroscopic evidence for intermediate states.
    Kuznetsova S; Knaff DB; Hirasawa M; Lagoutte B; Sétif P
    Biochemistry; 2004 Jan; 43(2):510-7. PubMed ID: 14717606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of arginyl residues involved in the binding of ferredoxin-NADP+ reductase from Anabaena sp. PCC 7119 to its substrates.
    Medina M; Mendez E; Gomez-Moreno C
    Arch Biochem Biophys; 1992 Dec; 299(2):281-6. PubMed ID: 1444467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.