These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 14871688)

  • 1. High temperature and drought stress effects on survival of Pinus ponderosa seedlings.
    Kolb PF; Robberecht R
    Tree Physiol; 1996 Aug; 16(8):665-72. PubMed ID: 14871688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of functional traits during seedling establishment in two populations of Pinus ponderosa from contrasting climates.
    Kerr KL; Meinzer FC; McCulloh KA; Woodruff DR; Marias DE
    Tree Physiol; 2015 May; 35(5):535-48. PubMed ID: 25934987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in morphological and physiological plasticity in two species of first-year conifer seedlings exposed to drought result in distinct survivorship patterns.
    Augustine SP; Reinhardt K
    Tree Physiol; 2019 Aug; 39(8):1446-1460. PubMed ID: 31181151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosynthetic performance of invasive Pinus ponderosa and Juniperus virginiana seedlings under gradual soil water depletion.
    Bihmidine S; Bryan NM; Payne KR; Parde MR; Okalebo JA; Cooperstein SE; Awada T
    Plant Biol (Stuttg); 2010 Jul; 12(4):668-75. PubMed ID: 20636910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restoration thinning and influence of tree size and leaf area to sapwood area ratio on water relations of Pinus ponderosa.
    Simonin K; Kolb TE; Montes-Helu M; Koch GW
    Tree Physiol; 2006 Apr; 26(4):493-503. PubMed ID: 16414928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests.
    Brooks JR; Meinzer FC; Coulombe R; Gregg J
    Tree Physiol; 2002 Nov; 22(15-16):1107-17. PubMed ID: 12414370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lethal combination for seedlings: extreme heat drives mortality of drought-exposed high-elevation pine seedlings.
    Hankin LE; Barrios-Masias FH; Urza AK; Bisbing SM
    Ann Bot; 2024 Apr; ():. PubMed ID: 38687134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of drought stress and low irradiance on plant water relations and structural constituents in needles of Pinus ponderosa seedlings.
    Vance NC; Zaerr JB
    Tree Physiol; 1991 Mar; 8(2):175-84. PubMed ID: 14972888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon allocation, gas exchange, and needle morphology of Pinus ponderosa genotypes known to differ in growth and survival under imposed drought.
    Cregg BM
    Tree Physiol; 1994; 14(7_9):883-898. PubMed ID: 14967656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season.
    Domisch T; Finér L; Lehto T
    Tree Physiol; 2001 May; 21(7):465-72. PubMed ID: 11340047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermotolerance and heat stress responses of Douglas-fir and ponderosa pine seedling populations from contrasting climates.
    Marias DE; Meinzer FC; Woodruff DR; McCulloh KA
    Tree Physiol; 2017 Mar; 37(3):301-315. PubMed ID: 28008081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth and physiological responses of Pinus ponderosa Dougl ex P. Laws. to long-term elevated CO(2) concentrations.
    Surano KA; Daley PF; Houpis JL; Shinn JH; Helms JA; Palassou RJ; Costella MP
    Tree Physiol; 1986 Dec; 2(1_2_3):243-259. PubMed ID: 14975858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen nutrition and drought hardening exert opposite effects on the stress tolerance of Pinus pinea L. seedlings.
    Villar-Salvador P; Peñuelas JL; Jacobs DF
    Tree Physiol; 2013 Feb; 33(2):221-32. PubMed ID: 23370549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution.
    Domec JC; Warren JM; Meinzer FC; Brooks JR; Coulombe R
    Oecologia; 2004 Sep; 141(1):7-16. PubMed ID: 15338263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fall lifting and long-term freezer storage of ponderosa pine seedlings: effects on post-storage leaf water potential, stomatal conductance, and root growth potential.
    Omi SK; Yoder B; Rose R
    Tree Physiol; 1991 Apr; 8(3):315-25. PubMed ID: 14972882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development-specific responses to drought stress in Aleppo pine (Pinus halepensis Mill.) seedlings.
    Alexou M
    Tree Physiol; 2013 Oct; 33(10):1030-42. PubMed ID: 24200584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extreme temperatures and thermal tolerances for seedlings of desert succulents.
    Nobel PS
    Oecologia; 1984 Jun; 62(3):310-317. PubMed ID: 28310883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon isotopic composition, gas exchange, and growth of three populations of ponderosa pine differing in drought tolerance.
    Zhang JW; Feng Z; Cregg BM; Schumann CM
    Tree Physiol; 1997 Jul; 17(7):461-6. PubMed ID: 14759838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of long-term ozone exposure and drought on the photosynthetic capacity of ponderosa pine (Pinus ponderosa Laws.).
    Beyers JL; Riechers GH; Temple PJ
    New Phytol; 1992 Sep; 122(1):81-90. PubMed ID: 33874044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of phenology, water availability and seed source on loblolly pine biomass partitioning and transpiration.
    Barnes AD
    Tree Physiol; 2002 Jul; 22(10):733-40. PubMed ID: 12091155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.