These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 14871701)

  • 41. Root dynamics in an artificially constructed regenerating longleaf pine ecosystem are affected by atmospheric CO(2) enrichment.
    Pritchard SG; Davis MA; Mitchell RJ; Prior SA; Boykin DL; Rogers HH; Runion GB
    Environ Exp Bot; 2001 Aug; 46(1):55-69. PubMed ID: 11378173
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simulated nitrogen cycling response to elevated CO(2) in Pinus taeda and mixed deciduous forests.
    Johnson DW
    Tree Physiol; 1999 Apr; 19(4_5):321-327. PubMed ID: 12651575
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution.
    Domec JC; Warren JM; Meinzer FC; Brooks JR; Coulombe R
    Oecologia; 2004 Sep; 141(1):7-16. PubMed ID: 15338263
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ectomycorrhizal communities of ponderosa pine and lodgepole pine in the south-central Oregon pumice zone.
    Garcia MO; Smith JE; Luoma DL; Jones MD
    Mycorrhiza; 2016 May; 26(4):275-86. PubMed ID: 26547440
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Elevated atmospheric CO2 concentration alters the effect of phosphate supply on growth of Japanese red pine (Pinus densiflora) seedlings.
    Kogawara S; Norisada M; Tange T; Yagi H; Kojima K
    Tree Physiol; 2006 Jan; 26(1):25-33. PubMed ID: 16203711
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2.
    Phillips RP; Meier IC; Bernhardt ES; Grandy AS; Wickings K; Finzi AC
    Ecol Lett; 2012 Sep; 15(9):1042-9. PubMed ID: 22776588
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season.
    Domisch T; Finér L; Lehto T
    Tree Physiol; 2001 May; 21(7):465-72. PubMed ID: 11340047
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of leaf nutrient status on photosynthetic capacity in loblolly pine (Pinus taeda L.) seedlings grown in elevated atmospheric CO(2).
    Thomas RB; Lewis JD; Strain BR
    Tree Physiol; 1994; 14(7_9):947-960. PubMed ID: 14967661
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influences of canopy photosynthesis and summer rain pulses on root dynamics and soil respiration in a young ponderosa pine forest.
    Misson L; Gershenson A; Tang J; McKay M; Cheng W; Goldstein A
    Tree Physiol; 2006 Jul; 26(7):833-44. PubMed ID: 16585030
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest.
    Guo DL; Mitchell RJ; Hendricks JJ
    Oecologia; 2004 Aug; 140(3):450-7. PubMed ID: 15179577
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada.
    Tang J; Qi Y; Xu M; Misson L; Goldstein AH
    Tree Physiol; 2005 Jan; 25(1):57-66. PubMed ID: 15519986
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effects of elevated CO2 and nitrogen fertilization on stomatal conductance estimated from 11 years of scaled sap flux measurements at Duke FACE.
    Ward EJ; Oren R; Bell DM; Clark JS; McCarthy HR; Kim HS; Domec JC
    Tree Physiol; 2013 Feb; 33(2):135-51. PubMed ID: 23243030
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux.
    Oishi AC; Palmroth S; Johnsen KH; McCarthy HR; Oren R
    Glob Chang Biol; 2014 Apr; 20(4):1146-60. PubMed ID: 24115580
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Seasonal changes in above- and belowground carbohydrate concentrations of ponderosa pine along a pollution gradient.
    Grulke NE; Andersen CP; Hogsett WE
    Tree Physiol; 2001 Feb; 21(2-3):173-81. PubMed ID: 11303648
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 13C discriminations of Pinus sylvestris vs. Pinus ponderosa at a dry site in Brandenburg (eastern Germany): 100-year growth comparison.
    Wagner R; Insinna PA; Götz B; Junge S; Boettger T
    Isotopes Environ Health Stud; 2007 Jun; 43(2):117-28. PubMed ID: 17558749
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stand-level allometry in Pinus taeda as affected by irrigation and fertilization.
    King JS; Albaugh TJ; Allen HL; Kress LW
    Tree Physiol; 1999 Oct; 19(12):769-778. PubMed ID: 10562392
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The influence of elevated carbon dioxide and water availability on herbaceous weed development and growth of transplanted loblolly pine (Pinus taeda).
    Gavazzi M; Seiler J; Aust W; Zedaker S
    Environ Exp Bot; 2000 Nov; 44(3):185-194. PubMed ID: 11064039
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acclimation of loblolly pine (Pinus taeda) seedlings to high temperatures.
    Teskey RO; Will RE
    Tree Physiol; 1999 Jul; 19(8):519-525. PubMed ID: 12651542
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ozone impacts on loblolly pine (Pinus taeda L.) grown in a competitive environment.
    Barbo DN; Chappelk AH; Somers GL; Miller-Goodman MS; Stolte K
    Environ Pollut; 2002; 116(1):27-36. PubMed ID: 11808552
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interactive effects of elevated CO2 concentration and nitrogen supply on partitioning of newly fixed 13C and 15N between shoot and roots of pedunculate oak seedlings (Quercus robur).
    Maillard P; Guehl JM; Muller JF; Gross P
    Tree Physiol; 2001 Feb; 21(2-3):163-72. PubMed ID: 11303647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.