These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 14871736)
1. Effects of elevated CO(2) and light availability on the photosynthetic light response of trees of contrasting shade tolerance. Kubiske ME; Pregitzer KS Tree Physiol; 1996 Mar; 16(3):351-8. PubMed ID: 14871736 [TBL] [Abstract][Full Text] [Related]
2. Photosynthetic acclimation of overstory Populus tremuloides and understory Acer saccharum to elevated atmospheric CO2 concentration: interactions with shade and soil nitrogen. Kubiske ME; Zak DR; Pregitzer KS; Takeuchi Y Tree Physiol; 2002 Apr; 22(5):321-9. PubMed ID: 11960756 [TBL] [Abstract][Full Text] [Related]
3. Photosynthetic responses to understory shade and elevated carbon dioxide concentration in four northern hardwood tree species. Sefcik LT; Zak DR; Ellsworth DS Tree Physiol; 2006 Dec; 26(12):1589-99. PubMed ID: 17169898 [TBL] [Abstract][Full Text] [Related]
4. Photosynthetic sunfleck utilization potential of understory saplings growing under elevated CO Naumburg E; Ellsworth DS Oecologia; 2000 Feb; 122(2):163-174. PubMed ID: 28308370 [TBL] [Abstract][Full Text] [Related]
5. Light compensation points in shade-grown seedlings of deciduous broadleaf tree species with different successional traits raised under elevated CO2. Kitao M; Hida T; Eguchi N; Tobita H; Utsugi H; Uemura A; Kitaoka S; Koike T Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():22-7. PubMed ID: 26404633 [TBL] [Abstract][Full Text] [Related]
6. Photosynthetic characteristics in canopies of Quercus rubra, Quercus prinus and Acer rubrum differ in response to soil water availability. Turnbull MH; Whitehead D; Tissue DT; Schuster WS; Brown KJ; Engel VC; Griffin KL Oecologia; 2002 Feb; 130(4):515-524. PubMed ID: 28547252 [TBL] [Abstract][Full Text] [Related]
7. A comparative study of physiological and morphological seedling traits associated with shade tolerance in introduced red oak (Quercus rubra) and native hardwood tree species in southwestern Germany. Kuehne C; Nosko P; Horwath T; Bauhus J Tree Physiol; 2014 Feb; 34(2):184-93. PubMed ID: 24531297 [TBL] [Abstract][Full Text] [Related]
8. Effects of light availability on leaf gas exchange and expansion in lychee (Litchi chinensis). Hieke S; Menzel CM; Lüdders P Tree Physiol; 2002 Dec; 22(17):1249-56. PubMed ID: 12464578 [TBL] [Abstract][Full Text] [Related]
9. Light environment alters response to ozone stress in seedlings of Acer saccharum Marsh, and hybrid Populus L.: I. In situ net photosynthesis, dark respiration and growth. Tjoelker MG; Volin JC; Oleksyn J; Reich PB New Phytol; 1993 Aug; 124(4):627-636. PubMed ID: 33874428 [TBL] [Abstract][Full Text] [Related]
10. Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum (Liquidambar styraciflua) in a forest ecosystem. Herrick JD; Thomas RB Tree Physiol; 1999 Oct; 19(12):779-786. PubMed ID: 10562393 [TBL] [Abstract][Full Text] [Related]
11. Leaf gas exchange, chlorophyll fluorescence and pigment indexes of Eugenia uniflora L. in response to changes in light intensity and soil flooding. Mielke MS; Schaffer B Tree Physiol; 2010 Jan; 30(1):45-55. PubMed ID: 19923194 [TBL] [Abstract][Full Text] [Related]
12. Growth, biomass distribution and CO Walters MB; Kruger EL; Reich PB Oecologia; 1993 May; 94(1):7-16. PubMed ID: 28313851 [TBL] [Abstract][Full Text] [Related]
13. Photosynthetic responses to light in seedlings of selected Amazonian and Australian rainforest tree species. Langenheim JH; Osmond CB; Brooks A; Ferrar PJ Oecologia; 1984 Aug; 63(2):215-224. PubMed ID: 28311016 [TBL] [Abstract][Full Text] [Related]
14. Shade, leaf growth and crown development of Quercus rubra, Quercus velutina, Prunus serotina and Acer rubrum seedlings. Gottschalk KW Tree Physiol; 1994; 14(7_9):735-749. PubMed ID: 14967644 [TBL] [Abstract][Full Text] [Related]
15. Induction of photosynthesis and importance of limitations during the induction phase in sun and shade leaves of five ecologically contrasting tree species from the temperate zone. Urban O; Kosvancová M; Marek MV; Lichtenthaler HK Tree Physiol; 2007 Aug; 27(8):1207-15. PubMed ID: 17472946 [TBL] [Abstract][Full Text] [Related]
16. Light environment alters response to ozone stress in seedlings of Acer saccharum Marsh, and hybrid Populus L.: II. Diagnostic gas exchange and leaf chemistry. Volin JC; Tjoelker MG; Oleksyn J; Reich PB New Phytol; 1993 Aug; 124(4):637-646. PubMed ID: 33874429 [TBL] [Abstract][Full Text] [Related]
17. Acclimation of leaves to contrasting irradiance in juvenile trees differing in shade tolerance. Wyka T; Robakowski P; Zytkowiak R Tree Physiol; 2007 Sep; 27(9):1293-306. PubMed ID: 17545129 [TBL] [Abstract][Full Text] [Related]
18. An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance. Niinemets U; Kull O; Tenhunen JD Tree Physiol; 1998 Oct; 18(10):681-696. PubMed ID: 12651418 [TBL] [Abstract][Full Text] [Related]
19. Responses of hybrid poplar clones and red maple seedlings to ambient O(3) under differing light within a mixed hardwood forest. Wei C; Skelly JM; Pennypacker SP; Ferdinand JA; Savage JE; Stevenson RE; Davis DD Environ Pollut; 2004 Jul; 130(2):199-214. PubMed ID: 15158034 [TBL] [Abstract][Full Text] [Related]
20. Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes. Awada T; Radoglou K; Fotelli MN; Constantinidou HI Tree Physiol; 2003 Jan; 23(1):33-41. PubMed ID: 12511302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]