These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 14871745)
1. Direct and indirect effects of elevated CO(2) on whole-shoot respiration in ponderosa pine seedlings. Griffin KL; Ball JT; Strain BR Tree Physiol; 1996; 16(1_2):33-41. PubMed ID: 14871745 [TBL] [Abstract][Full Text] [Related]
2. Seasonal changes in root and soil respiration of ozone-exposed ponderosa pine (Pinus ponderosa) grown in different substrates. Scagel CF; Andersen CP New Phytol; 1997 Aug; 136(4):627-643. PubMed ID: 33863111 [TBL] [Abstract][Full Text] [Related]
3. Physiological adjustment of two full-sib families of ponderosa pine to elevated CO(2). Grulke NE; Hom JL; Roberts SW Tree Physiol; 1993 Jun; 12(4):391-401. PubMed ID: 14969909 [TBL] [Abstract][Full Text] [Related]
4. Photosynthetic adjustment in field-grown ponderosa pine trees after six years of exposure to elevated CO(2). Tissue DT; Griffin KL; Ball JT Tree Physiol; 1999 Apr; 19(4_5):221-228. PubMed ID: 12651564 [TBL] [Abstract][Full Text] [Related]
5. Growth and carbon accumulation in root systems of Pinus taeda and Pinus ponderosa seedlings as affected by varying CO(2), temperature and nitrogen. King JS; Thomas RB; Strain BR Tree Physiol; 1996 Jul; 16(7):635-42. PubMed ID: 14871701 [TBL] [Abstract][Full Text] [Related]
6. Blue wild-rye grass competition increases the effect of ozone on ponderosa pine seedlings. Andersen CP; Hogsett WE; Plocher M; Rodecap K; Lee EH Tree Physiol; 2001 Mar; 21(5):319-27. PubMed ID: 11262923 [TBL] [Abstract][Full Text] [Related]
7. Growth and photosynthesis of loblolly pine (Pinus taeda) after exposure to elevated CO(2) for 19 months in the field. Tissue DT; Thomas RB; Strain BR Tree Physiol; 1996; 16(1_2):49-59. PubMed ID: 14871747 [TBL] [Abstract][Full Text] [Related]
8. Effects of CO(2) enrichment on growth and root (15)NH(4) (+) uptake rate of loblolly pine and ponderosa pine seedlings. Bassirirad H; Griffin KL; Strain BR; Reynolds JF Tree Physiol; 1996; 16(11_12):957-962. PubMed ID: 14871789 [TBL] [Abstract][Full Text] [Related]
9. Effects of leaf nutrient status on photosynthetic capacity in loblolly pine (Pinus taeda L.) seedlings grown in elevated atmospheric CO(2). Thomas RB; Lewis JD; Strain BR Tree Physiol; 1994; 14(7_9):947-960. PubMed ID: 14967661 [TBL] [Abstract][Full Text] [Related]
10. Stem maintenance and construction respiration in Pinus ponderosa grown in different concentrations of atmospheric CO(2). Carey EV; DeLucia EH; Ball JT Tree Physiol; 1996; 16(1_2):125-130. PubMed ID: 14871755 [TBL] [Abstract][Full Text] [Related]
11. Compensatory responses of CO Callaway RM; DeLucia EH; Thomas EM; Schlesinger WH Oecologia; 1994 Jul; 98(2):159-166. PubMed ID: 28313973 [TBL] [Abstract][Full Text] [Related]
12. Effect of elevated [CO(2)] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Picea sitchensis). Murray MB; Smith RI; Friend A; Jarvis PG Tree Physiol; 2000 Apr; 20(7):421-434. PubMed ID: 12651438 [TBL] [Abstract][Full Text] [Related]
13. Effects of elevated CO(2) and nitrogen on the synchrony of shoot and root growth in ponderosa pine. Tingey DT; Johnson MG; Phillips DL; Johnson DW; Ball JT Tree Physiol; 1996; 16(11_12):905-914. PubMed ID: 14871783 [TBL] [Abstract][Full Text] [Related]
14. Higher growth temperatures decreased net carbon assimilation and biomass accumulation of northern red oak seedlings near the southern limit of the species range. Wertin TM; McGuire MA; Teskey RO Tree Physiol; 2011 Dec; 31(12):1277-88. PubMed ID: 21937670 [TBL] [Abstract][Full Text] [Related]
15. Carbon isotopic composition, gas exchange, and growth of three populations of ponderosa pine differing in drought tolerance. Zhang JW; Feng Z; Cregg BM; Schumann CM Tree Physiol; 1997 Jul; 17(7):461-6. PubMed ID: 14759838 [TBL] [Abstract][Full Text] [Related]
16. Direct and Indirect Effects of Atmospheric Carbon Dioxide Enrichment on Leaf Respiration of Glycine max (L.) Merr. Thomas RB; Griffin KL Plant Physiol; 1994 Feb; 104(2):355-361. PubMed ID: 12232087 [TBL] [Abstract][Full Text] [Related]
17. Elevated atmospheric CO2 concentration alters the effect of phosphate supply on growth of Japanese red pine (Pinus densiflora) seedlings. Kogawara S; Norisada M; Tange T; Yagi H; Kojima K Tree Physiol; 2006 Jan; 26(1):25-33. PubMed ID: 16203711 [TBL] [Abstract][Full Text] [Related]
18. Offsetting changes in biomass allocation and photosynthesis in ponderosa pine (Pinus ponderosa) in response to climate change. DeLucia EH; Callaway RM; Schlesinger WH Tree Physiol; 1994; 14(7_9):669-677. PubMed ID: 14967639 [TBL] [Abstract][Full Text] [Related]
19. Allocation of carbon in mycorrhizal Pinus ponderosa seedlings exposed to ozone. Andersen CP; Rygiewicz PT New Phytol; 1995 Dec; 131(4):471-480. PubMed ID: 33863117 [TBL] [Abstract][Full Text] [Related]
20. Effects of nitrogen supply and elevated carbon dioxide on construction cost in leaves of Pinus taeda (L.) seedlings. Griffin KL; Thomas RB; Strain BR Oecologia; 1993 Oct; 95(4):575-580. PubMed ID: 28313299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]