These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 14871745)

  • 21. Phosphorus supply affects the photosynthetic capacity of loblolly pine grown in elevated carbon dioxide.
    Lewis JD; Griffin KL; Thomas RB; Strain BR
    Tree Physiol; 1994 Nov; 14(11):1229-44. PubMed ID: 14967614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of atmospheric CO(2) on longleaf pine: productivity and allocation as influenced by nitrogen and water.
    Prior SA; Runion GB; Mitchell RJ; Rogers HH; Amthor JS
    Tree Physiol; 1997 Jun; 17(6):397-405. PubMed ID: 14759848
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chlorophyll and carotenoid concentrations in two varieties of Pinus ponderosa seedlings subjected to long-term elevated carbon dioxide.
    Houpis JL; Surano KA; Cowles S; Shinn JH
    Tree Physiol; 1988 Jun; 4(2):187-93. PubMed ID: 14972829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Responses of loblolly pine seedlings to elevated CO(2) and fluctuating water supply.
    Tschaplinski TJ; Norby RJ; Wullschleger SD
    Tree Physiol; 1993 Oct; 13(3):283-96. PubMed ID: 14969886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth and physiological responses of Pinus ponderosa Dougl ex P. Laws. to long-term elevated CO(2) concentrations.
    Surano KA; Daley PF; Houpis JL; Shinn JH; Helms JA; Palassou RJ; Costella MP
    Tree Physiol; 1986 Dec; 2(1_2_3):243-259. PubMed ID: 14975858
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nutrient availability alters belowground respiration of ozone-exposed ponderosa pine.
    Andersen CP; Scagel CF
    Tree Physiol; 1997 Jun; 17(6):377-87. PubMed ID: 14759846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fall lifting and long-term freezer storage of ponderosa pine seedlings: effects on post-storage leaf water potential, stomatal conductance, and root growth potential.
    Omi SK; Yoder B; Rose R
    Tree Physiol; 1991 Apr; 8(3):315-25. PubMed ID: 14972882
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of acid rain and ozone on biomass and leaf area parameters of shortleaf pine (Pinus echinata Mill.).
    Shelburne VB; Reardon JC; Paynter VA
    Tree Physiol; 1993 Mar; 12(2):163-72. PubMed ID: 14969926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of soil temperature and elevated atmospheric CO2 concentration on gas exchange, in vivo carboxylation and chlorophyll fluorescence in jack pine and white birch seedlings.
    Zhang S; Dang QL
    Tree Physiol; 2005 May; 25(5):523-31. PubMed ID: 15741153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of photochemical smog and mineral nutrition on ponderosa pine seedlings.
    Bytnerowicz A; Poth M; Takemoto BK
    Environ Pollut; 1990; 67(3):233-48. PubMed ID: 15092211
    [TBL] [Abstract][Full Text] [Related]  

  • 31. To live fast or not: growth, vigor and longevity of old-growth ponderosa pine and lodgepole pine trees.
    Kaufmann MR
    Tree Physiol; 1996; 16(1_2):139-144. PubMed ID: 14871757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carry-over effects of ozone on root growth and carbohydrate concentrations of ponderosa pine seedlings.
    Andersen CP; Wilson R; Plocher M; Hogsett WE
    Tree Physiol; 1997 Dec; 17(12):805-11. PubMed ID: 14759890
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactive effects of elevated CO2 and temperature on water transport inponderosa pine.
    Maherali H; Delucia EH
    Am J Bot; 2000 Feb; 87(2):243-9. PubMed ID: 10675312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactive effects of elevated CO2 concentration and nitrogen supply on partitioning of newly fixed 13C and 15N between shoot and roots of pedunculate oak seedlings (Quercus robur).
    Maillard P; Guehl JM; Muller JF; Gross P
    Tree Physiol; 2001 Feb; 21(2-3):163-72. PubMed ID: 11303647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response.
    Phillips RP; Bernhardt ES; Schlesinger WH
    Tree Physiol; 2009 Dec; 29(12):1513-23. PubMed ID: 19819875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CO2 and N-fertilization effects on fine-root length, production, and mortality: a 4-year ponderosa pine study.
    Phillips DL; Johnson MG; Tingey DT; Storm MJ; Ball JT; Johnson DW
    Oecologia; 2006 Jun; 148(3):517-25. PubMed ID: 16547735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of prolonged drought stress on Scots pine seedling carbon allocation.
    Aaltonen H; Lindén A; Heinonsalo J; Biasi C; Pumpanen J
    Tree Physiol; 2017 Apr; 37(4):418-427. PubMed ID: 27974653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the relationships among O(3) uptake, conductance, and photosynthesis in needles of Pinus ponderosa.
    Weber JA; Clark CS; Hogsett WE
    Tree Physiol; 1993 Sep; 13(2):157-72. PubMed ID: 14969893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acclimation of loblolly pine (Pinus taeda) seedlings to high temperatures.
    Teskey RO; Will RE
    Tree Physiol; 1999 Jul; 19(8):519-525. PubMed ID: 12651542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiological responses of ponderosa pine in western Montana to thinning, prescribed fire and burning season.
    Sala A; Peters GD; McIntyre LR; Harrington MG
    Tree Physiol; 2005 Mar; 25(3):339-48. PubMed ID: 15631982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.