These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 14871755)

  • 1. Stem maintenance and construction respiration in Pinus ponderosa grown in different concentrations of atmospheric CO(2).
    Carey EV; DeLucia EH; Ball JT
    Tree Physiol; 1996; 16(1_2):125-130. PubMed ID: 14871755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stem respiration of ponderosa pines grown in contrasting climates: implications for global climate change.
    Carey EV; Callaway RM; DeLucia EH
    Oecologia; 1997 Jun; 111(1):19-25. PubMed ID: 28307501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct and indirect effects of elevated CO(2) on whole-shoot respiration in ponderosa pine seedlings.
    Griffin KL; Ball JT; Strain BR
    Tree Physiol; 1996; 16(1_2):33-41. PubMed ID: 14871745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosynthetic adjustment in field-grown ponderosa pine trees after six years of exposure to elevated CO(2).
    Tissue DT; Griffin KL; Ball JT
    Tree Physiol; 1999 Apr; 19(4_5):221-228. PubMed ID: 12651564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Offsetting changes in biomass allocation and photosynthesis in ponderosa pine (Pinus ponderosa) in response to climate change.
    DeLucia EH; Callaway RM; Schlesinger WH
    Tree Physiol; 1994; 14(7_9):669-677. PubMed ID: 14967639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status.
    Ryan MG; Hubbard RM; Pongracic S; Raison RJ; McMurtrie RE
    Tree Physiol; 1996 Mar; 16(3):333-43. PubMed ID: 14871734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensatory responses of CO
    Callaway RM; DeLucia EH; Thomas EM; Schlesinger WH
    Oecologia; 1994 Jul; 98(2):159-166. PubMed ID: 28313973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Respiratory responses of Scots pine stems to 5 years of exposure to elevated CO2 concentration and temperature.
    Zha TS; Kellomäki S; Wang KY; Ryyppö A
    Tree Physiol; 2005 Jan; 25(1):49-56. PubMed ID: 15519985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Woody tissue maintenance respiration of four conifers in contrasting climates.
    Ryan MG; Gower ST; Hubbard RM; Waring RH; Gholz HL; Cropper WP; Running SW
    Oecologia; 1995 Feb; 101(2):133-140. PubMed ID: 28306783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Woody-tissue respiration for Simarouba amara and Minquartia guianensis, two tropical wet forest trees with different growth habits.
    Ryan MG; Hubbard RM; Clark DA; Sanford RL
    Oecologia; 1994 Dec; 100(3):213-220. PubMed ID: 28307003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological adjustment of two full-sib families of ponderosa pine to elevated CO(2).
    Grulke NE; Hom JL; Roberts SW
    Tree Physiol; 1993 Jun; 12(4):391-401. PubMed ID: 14969909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon budget of Pinus sylvestris saplings after four years of exposure to elevated atmospheric carbon dioxide concentration.
    Janssens IA; Medlyn B; Gielen B; Laureysens I; Jach ME; Van Hove D; Ceulemans R
    Tree Physiol; 2005 Mar; 25(3):325-37. PubMed ID: 15631981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal variation in respiration of 1-year-old shoots of scots pine exposed to elevated carbon dioxide and temperature for 4 years.
    Zha TS; Kellomaki S; Wang KY
    Ann Bot; 2003 Jul; 92(1):89-96. PubMed ID: 12763759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of respiration of soybean leaves grown at ambient and elevated carbon dioxide concentrations to day-to-day variation in light and temperature under field conditions.
    Bunce JA
    Ann Bot; 2005 May; 95(6):1059-66. PubMed ID: 15781437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-occurring species differ in tree-ring delta(18)O trends.
    Marshall JD; Monserud RA
    Tree Physiol; 2006 Aug; 26(8):1055-66. PubMed ID: 16651255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of foliar gas exchange to long-term elevated CO(2) concentrations in mature loblolly pine trees.
    Liu S; Teskey RO
    Tree Physiol; 1995 Jun; 15(6):351-9. PubMed ID: 14965943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of elevated carbon dioxide concentration and temperature on needle growth, respiration and carbohydrate status in field-grown Scots pines during the needle expansion period.
    Zha T; Ryyppö A; Wang KY; Kellomäki S
    Tree Physiol; 2001 Nov; 21(17):1279-87. PubMed ID: 11696415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and physiological responses of Pinus ponderosa Dougl ex P. Laws. to long-term elevated CO(2) concentrations.
    Surano KA; Daley PF; Houpis JL; Shinn JH; Helms JA; Palassou RJ; Costella MP
    Tree Physiol; 1986 Dec; 2(1_2_3):243-259. PubMed ID: 14975858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological responses of ponderosa pine in western Montana to thinning, prescribed fire and burning season.
    Sala A; Peters GD; McIntyre LR; Harrington MG
    Tree Physiol; 2005 Mar; 25(3):339-48. PubMed ID: 15631982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth, respiration and nitrogen content in needles of Scots pine exposed to elevated ozone and carbon dioxide in the field.
    Kellomäki S; Wang KY
    Environ Pollut; 1998; 101(2):263-74. PubMed ID: 15093088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.