These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 14871786)

  • 1. Responses of loblolly pine, sweetgum and crab grass roots to localized increases in nitrogen in two watering regimes.
    Ludovici KH; Morris LA
    Tree Physiol; 1996; 16(11_12):933-939. PubMed ID: 14871786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of CO
    Tolley LC; Strain BR
    Oecologia; 1985 Jan; 65(2):166-172. PubMed ID: 28310662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of elevated CO2 and mycorrhizae on nitrogen acquisition: contrasting responses in Pinus taeda and Liquidambar styraciflua.
    Constable JV; Bassirirad H; Lussenhop J; Zerihun A
    Tree Physiol; 2001 Feb; 21(2-3):83-91. PubMed ID: 11303652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fine-root respiration in a loblolly pine and sweetgum forest growing in elevated CO
    George K; Norby RJ; Hamilton JG; DeLucia EH
    New Phytol; 2003 Dec; 160(3):511-522. PubMed ID: 33873663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production efficiency of loblolly pine and sweetgum in response to four years of intensive management.
    Samuelson L; Stokes T; Cooksey T; McLemore P
    Tree Physiol; 2001 Apr; 21(6):369-76. PubMed ID: 11282576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of phenology, water availability and seed source on loblolly pine biomass partitioning and transpiration.
    Barnes AD
    Tree Physiol; 2002 Jul; 22(10):733-40. PubMed ID: 12091155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil nitrogen and chronic ozone stress influence physiology, growth and nutrient status of Pinus taeda L. and Liriodendron tulipifera L. seedlings.
    Tjoelker MG; Luxmoore RJ
    New Phytol; 1991 Sep; 119(1):69-81. PubMed ID: 33874340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and Temporal Variation in Competitive Effects on Soil Moisture and Pine Response.
    Mitchell RJ; Zutter BR; Green TH; Perry MA; Gjerstad DH
    Ecol Appl; 1993 Feb; 3(1):167-174. PubMed ID: 27759221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of split-root assays for loblolly pine (
    Rose BD; Frank HER; Garcia K
    MethodsX; 2023; 10():102046. PubMed ID: 36814690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of elevated carbon dioxide and water availability on herbaceous weed development and growth of transplanted loblolly pine (Pinus taeda).
    Gavazzi M; Seiler J; Aust W; Zedaker S
    Environ Exp Bot; 2000 Nov; 44(3):185-194. PubMed ID: 11064039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of loblolly pine seedlings to elevated CO(2) and fluctuating water supply.
    Tschaplinski TJ; Norby RJ; Wullschleger SD
    Tree Physiol; 1993 Oct; 13(3):283-96. PubMed ID: 14969886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term elevation of atmospheric CO(2) concentration and the carbon exchange rates of saplings of Pinus taeda L. and Liquidambar styraciflua L.
    Fetcher N; Jaeger CH; Strain BR; Sionit N
    Tree Physiol; 1988 Sep; 4(3):255-62. PubMed ID: 14972815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminum sensitivity of loblolly pine and slash pine seedlings grown in solution culture.
    Nowak J; Friend AL
    Tree Physiol; 1995 Sep; 15(9):605-9. PubMed ID: 14965918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response.
    Phillips RP; Bernhardt ES; Schlesinger WH
    Tree Physiol; 2009 Dec; 29(12):1513-23. PubMed ID: 19819875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization.
    Maier CA; Johnsen KH; Butnor J; Kress LW; Anderson PH
    Tree Physiol; 2002 Nov; 22(15-16):1093-106. PubMed ID: 12414369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine root responses to temporal nutrient heterogeneity and competition in seedlings of two tree species with different rooting strategies.
    Wang P; Shu M; Mou P; Weiner J
    Ecol Evol; 2018 Mar; 8(6):3367-3375. PubMed ID: 29607031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diurnal changes in water conduction in loblolly pine (Pinus taeda) and Virginia pine (P. virginiana) during soil dehydration.
    Wakamiya-Noborio I; Heilman JL; Newton RJ; Messina MG
    Tree Physiol; 1999 Jul; 19(9):575-581. PubMed ID: 12651531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The response of coarse root biomass to long-term CO
    Maier CA; Johnsen KH; Anderson PH; Palmroth S; Kim D; McCarthy HR; Oren R
    Glob Chang Biol; 2022 Feb; 28(4):1458-1476. PubMed ID: 34783402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of CO(2) enrichment on growth and root (15)NH(4) (+) uptake rate of loblolly pine and ponderosa pine seedlings.
    Bassirirad H; Griffin KL; Strain BR; Reynolds JF
    Tree Physiol; 1996; 16(11_12):957-962. PubMed ID: 14871789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Association of a Longidorus Species with Stunting and Root Damage of Loblolly Pine (Pinus taeda L.) Seedlings.
    Fraedrich SW; Cram MM
    Plant Dis; 2002 Jul; 86(7):803-807. PubMed ID: 30818581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.