These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 14871789)

  • 1. Effects of CO(2) enrichment on growth and root (15)NH(4) (+) uptake rate of loblolly pine and ponderosa pine seedlings.
    Bassirirad H; Griffin KL; Strain BR; Reynolds JF
    Tree Physiol; 1996; 16(11_12):957-962. PubMed ID: 14871789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth and carbon accumulation in root systems of Pinus taeda and Pinus ponderosa seedlings as affected by varying CO(2), temperature and nitrogen.
    King JS; Thomas RB; Strain BR
    Tree Physiol; 1996 Jul; 16(7):635-42. PubMed ID: 14871701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal changes in root and soil respiration of ozone-exposed ponderosa pine (Pinus ponderosa) grown in different substrates.
    Scagel CF; Andersen CP
    New Phytol; 1997 Aug; 136(4):627-643. PubMed ID: 33863111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of anaerobic growth conditions on phosphorus tissue concentrations and absorption rates of southern pine seedlings.
    Topa MA; McLeod KW
    Tree Physiol; 1986 Dec; 2(1_2_3):327-340. PubMed ID: 14975866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution.
    Domec JC; Warren JM; Meinzer FC; Brooks JR; Coulombe R
    Oecologia; 2004 Sep; 141(1):7-16. PubMed ID: 15338263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of elevated CO2 and mycorrhizae on nitrogen acquisition: contrasting responses in Pinus taeda and Liquidambar styraciflua.
    Constable JV; Bassirirad H; Lussenhop J; Zerihun A
    Tree Physiol; 2001 Feb; 21(2-3):83-91. PubMed ID: 11303652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil nitrogen and chronic ozone stress influence physiology, growth and nutrient status of Pinus taeda L. and Liriodendron tulipifera L. seedlings.
    Tjoelker MG; Luxmoore RJ
    New Phytol; 1991 Sep; 119(1):69-81. PubMed ID: 33874340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of phenology, water availability and seed source on loblolly pine biomass partitioning and transpiration.
    Barnes AD
    Tree Physiol; 2002 Jul; 22(10):733-40. PubMed ID: 12091155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response.
    Phillips RP; Bernhardt ES; Schlesinger WH
    Tree Physiol; 2009 Dec; 29(12):1513-23. PubMed ID: 19819875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of split-root assays for loblolly pine (
    Rose BD; Frank HER; Garcia K
    MethodsX; 2023; 10():102046. PubMed ID: 36814690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blue wild-rye grass competition increases the effect of ozone on ponderosa pine seedlings.
    Andersen CP; Hogsett WE; Plocher M; Rodecap K; Lee EH
    Tree Physiol; 2001 Mar; 21(5):319-27. PubMed ID: 11262923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of loblolly pine, sweetgum and crab grass roots to localized increases in nitrogen in two watering regimes.
    Ludovici KH; Morris LA
    Tree Physiol; 1996; 16(11_12):933-939. PubMed ID: 14871786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct and indirect effects of elevated CO(2) on whole-shoot respiration in ponderosa pine seedlings.
    Griffin KL; Ball JT; Strain BR
    Tree Physiol; 1996; 16(1_2):33-41. PubMed ID: 14871745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of leaf nutrient status on photosynthetic capacity in loblolly pine (Pinus taeda L.) seedlings grown in elevated atmospheric CO(2).
    Thomas RB; Lewis JD; Strain BR
    Tree Physiol; 1994; 14(7_9):947-960. PubMed ID: 14967661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of nitrogen uptake by Populus tremuloides in relation to atmospheric CO(2) and soil nitrogen availability.
    Rothstein DE; Zak DR; Pregitzer KS; Curtis PS
    Tree Physiol; 2000 Mar; 20(4):265-270. PubMed ID: 12651463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aluminum sensitivity of loblolly pine and slash pine seedlings grown in solution culture.
    Nowak J; Friend AL
    Tree Physiol; 1995 Sep; 15(9):605-9. PubMed ID: 14965918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine-root respiration in a loblolly pine and sweetgum forest growing in elevated CO
    George K; Norby RJ; Hamilton JG; DeLucia EH
    New Phytol; 2003 Dec; 160(3):511-522. PubMed ID: 33873663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and photosynthesis of loblolly pine (Pinus taeda) after exposure to elevated CO(2) for 19 months in the field.
    Tissue DT; Thomas RB; Strain BR
    Tree Physiol; 1996; 16(1_2):49-59. PubMed ID: 14871747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil DIC uptake and fixation in Pinus taeda seedlings and its C contribution to plant tissues and ectomycorrhizal fungi.
    Ford CR; Wurzburger N; Hendrick RL; Teskey RO
    Tree Physiol; 2007 Mar; 27(3):375-83. PubMed ID: 17241979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in root architecture under elevated concentrations of CO₂ and nitrogen reflect alternate soil exploration strategies.
    Beidler KV; Taylor BN; Strand AE; Cooper ER; Schönholz M; Pritchard SG
    New Phytol; 2015 Feb; 205(3):1153-1163. PubMed ID: 25348775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.