These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 14871789)

  • 21. Belowground carbon dynamics in loblolly pine (Pinus taeda) immediately following diammonium phosphate fertilization.
    Gough CM; Seiler JR
    Tree Physiol; 2004 Jul; 24(7):845-51. PubMed ID: 15123456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Association of a Longidorus Species with Stunting and Root Damage of Loblolly Pine (Pinus taeda L.) Seedlings.
    Fraedrich SW; Cram MM
    Plant Dis; 2002 Jul; 86(7):803-807. PubMed ID: 30818581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Root growth and water use efficiency of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings.
    Smit J; Van Den Driessche R
    Tree Physiol; 1992 Dec; 11(4):401-10. PubMed ID: 14969945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Absorption and assimilation of nitrate and ammonium ions by jack pine seedlings.
    Lavoie N; Vézina LP; Margolis HA
    Tree Physiol; 1992 Sep; 11(2):171-83. PubMed ID: 14969960
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carry-over effects of ozone on root growth and carbohydrate concentrations of ponderosa pine seedlings.
    Andersen CP; Wilson R; Plocher M; Hogsett WE
    Tree Physiol; 1997 Dec; 17(12):805-11. PubMed ID: 14759890
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Offsetting changes in biomass allocation and photosynthesis in ponderosa pine (Pinus ponderosa) in response to climate change.
    DeLucia EH; Callaway RM; Schlesinger WH
    Tree Physiol; 1994; 14(7_9):669-677. PubMed ID: 14967639
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vascular cambial sucrose metabolism and growth in loblolly pine (Pinus taeda L.) in relation to transplanting stress.
    Sung SJ; Kormanik PP; Black CC
    Tree Physiol; 1993 Apr; 12(3):243-58. PubMed ID: 14969915
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Xylem vulnerability to cavitation in Pseudotsuga menziesii and Pinus ponderosa from contrasting habitats.
    Stout DH; Sala A
    Tree Physiol; 2003 Jan; 23(1):43-50. PubMed ID: 12511303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elevated CO2 and O3 effects on fine-root survivorship in ponderosa pine mesocosms.
    Phillips DL; Johnson MG; Tingey DT; Storm MJ
    Oecologia; 2009 Jul; 160(4):827-37. PubMed ID: 19415339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compensatory responses of CO
    Callaway RM; DeLucia EH; Thomas EM; Schlesinger WH
    Oecologia; 1994 Jul; 98(2):159-166. PubMed ID: 28313973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nutrient uptake by intact mycorrhizal Pinus sylvestris seedlings: a diagnostic tool to detect copper toxicity.
    Van Tichelen KK; Vanstraelen T; Colpaert JV
    Tree Physiol; 1999 Mar; 19(3):189-196. PubMed ID: 12651582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests.
    Brooks JR; Meinzer FC; Coulombe R; Gregg J
    Tree Physiol; 2002 Nov; 22(15-16):1107-17. PubMed ID: 12414370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Soil incorporation of logging residue affects fine-root and mycorrhizal root-tip dynamics of young loblolly pine clones.
    Pritchard SG; Maier CA; Johnsen KH; Grabman AJ; Chalmers AP; Burke MK
    Tree Physiol; 2010 Oct; 30(10):1299-310. PubMed ID: 20668289
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Responses of loblolly pine seedlings to elevated CO(2) and fluctuating water supply.
    Tschaplinski TJ; Norby RJ; Wullschleger SD
    Tree Physiol; 1993 Oct; 13(3):283-96. PubMed ID: 14969886
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorus supply affects the photosynthetic capacity of loblolly pine grown in elevated carbon dioxide.
    Lewis JD; Griffin KL; Thomas RB; Strain BR
    Tree Physiol; 1994 Nov; 14(11):1229-44. PubMed ID: 14967614
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Timing and magnitude of C partitioning through a young loblolly pine (Pinus taeda L.) stand using 13C labeling and shade treatments.
    Warren JM; Iversen CM; Garten CT; Norby RJ; Childs J; Brice D; Evans RM; Gu L; Thornton P; Weston DJ
    Tree Physiol; 2012 Jun; 32(6):799-813. PubMed ID: 22210530
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-occurring species differ in tree-ring delta(18)O trends.
    Marshall JD; Monserud RA
    Tree Physiol; 2006 Aug; 26(8):1055-66. PubMed ID: 16651255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of elevated CO(2) and nitrogen on the synchrony of shoot and root growth in ponderosa pine.
    Tingey DT; Johnson MG; Phillips DL; Johnson DW; Ball JT
    Tree Physiol; 1996; 16(11_12):905-914. PubMed ID: 14871783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aluminum fractions in root tips of slash pine and loblolly pine families differing in Al resistance.
    Nowak J; Friend AL
    Tree Physiol; 2005 Feb; 25(2):245-50. PubMed ID: 15574406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of CO
    Tolley LC; Strain BR
    Oecologia; 1985 Jan; 65(2):166-172. PubMed ID: 28310662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.