These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 14871793)

  • 1. Sap flow measurements of lateral tree roots in agroforestry systems.
    Lott JE; Khan AA; Ong CK; Black CR
    Tree Physiol; 1996; 16(11_12):995-1001. PubMed ID: 14871793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating water use by sugar maple trees: considerations when using heat-pulse methods in trees with deep functional sapwood.
    Pausch RC; Grote EE; Dawson TE
    Tree Physiol; 2000 Mar; 20(4):217-227. PubMed ID: 12651458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ measurement of water absorption by fine roots of three temperate trees: species differences and differential activity of superficial and deep roots.
    Leuschner C; Coners H; Icke R
    Tree Physiol; 2004 Dec; 24(12):1359-67. PubMed ID: 15465698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tree growth and management in Ugandan agroforestry systems: effects of root pruning on tree growth and crop yield.
    Wajja-Musukwe TN; Wilson J; Sprent JI; Ong CK; Deans JD; Okorio J
    Tree Physiol; 2008 Feb; 28(2):233-42. PubMed ID: 18055434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydraulic redistribution of soil water by neotropical savanna trees.
    Scholz FG; Bucci SJ; Goldstein G; Meinzer FC; Franco AC
    Tree Physiol; 2002 Jun; 22(9):603-12. PubMed ID: 12069916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertical and horizontal water redistribution in Norway spruce (Picea abies) roots in the Moravian Upland.
    Nadezhdina N; Cermák J; Gaspárek J; Nadezhdin V; Prax A
    Tree Physiol; 2006 Oct; 26(10):1277-88. PubMed ID: 16815830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Below- and aboveground production in cocoa monocultures and agroforestry systems.
    Niether W; Schneidewind U; Fuchs M; Schneider M; Armengot L
    Sci Total Environ; 2019 Mar; 657():558-567. PubMed ID: 30550918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydraulic redistribution by deep roots of a Chihuahuan Desert phreatophyte.
    Hultine KR; Cable WL; Burgess SS; Williams DG
    Tree Physiol; 2003 Apr; 23(5):353-60. PubMed ID: 12615550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of sap flow in roots of woody plants: a commentary.
    Burgess SS; Adams MA; Bleby TM
    Tree Physiol; 2000 Jul; 20(13):909-13. PubMed ID: 11303581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydraulic redistribution in three Amazonian trees.
    Oliveira RS; Dawson TE; Burgess SS; Nepstad DC
    Oecologia; 2005 Sep; 145(3):354-63. PubMed ID: 16091971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The redistribution of soil water by tree root systems.
    Burgess SS; Adams MA; Turner NC; Ong CK
    Oecologia; 1998 Jul; 115(3):306-311. PubMed ID: 28308420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of heat pulse and deuterium tracing techniques for estimating sap flow in Eucalyptus grandis trees.
    Kalma SJ; Thorburn PJ; Dunn GM
    Tree Physiol; 1998 Oct; 18(10):697-705. PubMed ID: 12651419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees.
    Cermák J; Kucera J; Bauerle WL; Phillips N; Hinckley TM
    Tree Physiol; 2007 Feb; 27(2):181-98. PubMed ID: 17241961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variability with xylem depth in sap flow in trunks and branches of mature olive trees.
    Nadezhdina N; Nadezhdin V; Ferreira MI; Pitacco A
    Tree Physiol; 2007 Jan; 27(1):105-13. PubMed ID: 17169912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instrumental methods for studies of structure and function of root systems of large trees.
    Nadezhdina N; Cermak J
    J Exp Bot; 2003 Jun; 54(387):1511-21. PubMed ID: 12730274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water uptake and hydraulic redistribution across large woody root systems to 20 m depth.
    Bleby TM; McElrone AJ; Jackson RB
    Plant Cell Environ; 2010 Dec; 33(12):2132-48. PubMed ID: 20716068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of environmentally induced stem temperature gradients on transpiration estimates from the heat balance method in two tropical woody species.
    Gutiérrez MV; Harrington RA; Meinzer FC; Fownes JH
    Tree Physiol; 1994 Feb; 14(2):179-90. PubMed ID: 14967712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental regulation of xylem sap flow and total conductance of Larix gmelinii trees in eastern Siberia.
    Arneth A; Kelliher FM; Bauer G; Hollinger DY; Byers JN; Hunt JE; McSeveny TM; Ziegler W; Vygodskaya NN; Milukova I; Sogachov A; Varlagin A; Schulze ED
    Tree Physiol; 1996; 16(1_2):247-255. PubMed ID: 14871769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood.
    James SA; Clearwater MJ; Meinzer FC; Goldstein G
    Tree Physiol; 2002 Mar; 22(4):277-83. PubMed ID: 11874724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cocoa agroforestry is less resilient to sub-optimal and extreme climate than cocoa in full sun.
    Abdulai I; Vaast P; Hoffmann MP; Asare R; Jassogne L; Van Asten P; Rötter RP; Graefe S
    Glob Chang Biol; 2018 Jan; 24(1):273-286. PubMed ID: 28865146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.