BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 14871804)

  • 41. Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner.
    Castro AF; Rebhun JF; Clark GJ; Quilliam LA
    J Biol Chem; 2003 Aug; 278(35):32493-6. PubMed ID: 12842888
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tuberous sclerosis complex: genetics to pathogenesis.
    Narayanan V
    Pediatr Neurol; 2003 Nov; 29(5):404-9. PubMed ID: 14684235
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aspects of tuberous sclerosis complex (TSC) protein function in the brain.
    Ramesh V
    Biochem Soc Trans; 2003 Jun; 31(Pt 3):579-83. PubMed ID: 12773159
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pathological mutations in TSC1 and TSC2 disrupt the interaction between hamartin and tuberin.
    Hodges AK; Li S; Maynard J; Parry L; Braverman R; Cheadle JP; DeClue JE; Sampson JR
    Hum Mol Genet; 2001 Dec; 10(25):2899-905. PubMed ID: 11741833
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular pathogenesis of tuber formation in tuberous sclerosis complex.
    Crino PB
    J Child Neurol; 2004 Sep; 19(9):716-25. PubMed ID: 15563019
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of FIP200 interaction with the TSC1-TSC2 complex and its role in regulation of cell size control.
    Gan B; Melkoumian ZK; Wu X; Guan KL; Guan JL
    J Cell Biol; 2005 Aug; 170(3):379-89. PubMed ID: 16043512
    [TBL] [Abstract][Full Text] [Related]  

  • 47. TSC1 and TSC2: genes that are mutated in the human genetic disorder tuberous sclerosis.
    Sampson JR
    Biochem Soc Trans; 2003 Jun; 31(Pt 3):592-6. PubMed ID: 12773162
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR.
    Zhang H; Cicchetti G; Onda H; Koon HB; Asrican K; Bajraszewski N; Vazquez F; Carpenter CL; Kwiatkowski DJ
    J Clin Invest; 2003 Oct; 112(8):1223-33. PubMed ID: 14561707
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evidence for separable functions of tuberous sclerosis gene products in mammalian cell cycle regulation.
    Miloloza A; Kubista M; Rosner M; Hengstschläger M
    J Neuropathol Exp Neurol; 2002 Feb; 61(2):154-63. PubMed ID: 11853018
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Association of focal adhesion kinase with tuberous sclerosis complex 2 in the regulation of s6 kinase activation and cell growth.
    Gan B; Yoo Y; Guan JL
    J Biol Chem; 2006 Dec; 281(49):37321-9. PubMed ID: 17043358
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cell cycle-regulated phosphorylation of hamartin, the product of the tuberous sclerosis complex 1 gene, by cyclin-dependent kinase 1/cyclin B.
    Astrinidis A; Senapedis W; Coleman TR; Henske EP
    J Biol Chem; 2003 Dec; 278(51):51372-9. PubMed ID: 14551205
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer.
    Ma L; Teruya-Feldstein J; Bonner P; Bernardi R; Franz DN; Witte D; Cordon-Cardo C; Pandolfi PP
    Cancer Res; 2007 Aug; 67(15):7106-12. PubMed ID: 17671177
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent advances in the regulation of the TOR pathway by insulin and nutrients.
    Avruch J; Lin Y; Long X; Murthy S; Ortiz-Vega S
    Curr Opin Clin Nutr Metab Care; 2005 Jan; 8(1):67-72. PubMed ID: 15586002
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficacy of combined inhibition of mTOR and ERK/MAPK pathways in treating a tuberous sclerosis complex cell model.
    Mi R; Ma J; Zhang D; Li L; Zhang H
    J Genet Genomics; 2009 Jun; 36(6):355-61. PubMed ID: 19539245
    [TBL] [Abstract][Full Text] [Related]  

  • 55. TSC1-TSC2: a complex tale of PKB-mediated S6K regulation.
    McManus EJ; Alessi DR
    Nat Cell Biol; 2002 Sep; 4(9):E214-6. PubMed ID: 12205484
    [No Abstract]   [Full Text] [Related]  

  • 56. Prostaglandin E2 mediates phosphorylation and down-regulation of the tuberous sclerosis-2 tumor suppressor (tuberin) in human endometrial adenocarcinoma cells via the Akt signaling pathway.
    Sales KJ; Battersby S; Williams AR; Anderson RA; Jabbour HN
    J Clin Endocrinol Metab; 2004 Dec; 89(12):6112-8. PubMed ID: 15579767
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Loss of expression of tuberin and hamartin in tuberous sclerosis complex-associated but not in sporadic angiofibromas.
    Fackler I; DeClue JE; Rust H; Vu PA; Kutzner H; Rütten A; Kaddu S; Sander CA; Volkenandt M; Johnson MW; Vinters HV; Wienecke R
    J Cutan Pathol; 2003 Mar; 30(3):174-7. PubMed ID: 12641776
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Akt-dependent phosphorylation of serine 1179 and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 cooperatively mediate activation of the endothelial nitric-oxide synthase by hydrogen peroxide.
    Cai H; Li Z; Davis ME; Kanner W; Harrison DG; Dudley SC
    Mol Pharmacol; 2003 Feb; 63(2):325-31. PubMed ID: 12527803
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of mTOR signaling pathway in the pathogenesis of subependymal giant cell astrocytoma - A study of 28 cases.
    Kumari K; Sharma MC; Kakkar A; Malgulwar PB; Pathak P; Suri V; Sarkar C; Chandra SP; Faruq M; Gupta RK; Saran RK
    Neurol India; 2016; 64(5):988-94. PubMed ID: 27625244
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tuberin-heterozygous cell line TSC2ang1 as a model for tuberous sclerosis-associated skin lesions.
    Wlodarski PK; Maksym R; Oldak M; Jozwiak S; Wojcik A; Jozwiak J
    Int J Mol Med; 2008 Feb; 21(2):245-50. PubMed ID: 18204792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.