These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 14871927)

  • 1. Distinct roles for PP1 and PP2A in the Neurospora circadian clock.
    Yang Y; He Q; Cheng P; Wrage P; Yarden O; Liu Y
    Genes Dev; 2004 Feb; 18(3):255-60. PubMed ID: 14871927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of posttranslational regulations in the Neurospora circadian clock.
    Liu Y
    Methods Enzymol; 2005; 393():379-93. PubMed ID: 15817300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of FREQUENCY protein by casein kinase II is necessary for the function of the Neurospora circadian clock.
    Yang Y; Cheng P; He Q; Wang L; Liu Y
    Mol Cell Biol; 2003 Sep; 23(17):6221-8. PubMed ID: 12917343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional feedback of Neurospora circadian clock gene by phosphorylation-dependent inactivation of its transcription factor.
    Schafmeier T; Haase A; Káldi K; Scholz J; Fuchs M; Brunner M
    Cell; 2005 Jul; 122(2):235-46. PubMed ID: 16051148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the Neurospora circadian clock by casein kinase II.
    Yang Y; Cheng P; Liu Y
    Genes Dev; 2002 Apr; 16(8):994-1006. PubMed ID: 11959847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A PEST-like element in FREQUENCY determines the length of the circadian period in Neurospora crassa.
    Görl M; Merrow M; Huttner B; Johnson J; Roenneberg T; Brunner M
    EMBO J; 2001 Dec; 20(24):7074-84. PubMed ID: 11742984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coiled-coil domain-mediated FRQ-FRQ interaction is essential for its circadian clock function in Neurospora.
    Cheng P; Yang Y; Heintzen C; Liu Y
    EMBO J; 2001 Jan; 20(1-2):101-8. PubMed ID: 11226160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium leads to an increased FRQ protein stability and to a partial loss of temperature compensation in the Neurospora circadian clock.
    Jolma IW; Falkeid G; Bamerni M; Ruoff P
    J Biol Rhythms; 2006 Oct; 21(5):327-34. PubMed ID: 16998153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of the Neurospora circadian clock protein FREQUENCY through the ubiquitin-proteasome pathway.
    He Q; Liu Y
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):953-6. PubMed ID: 16246019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of the Neurospora clock protein FREQUENCY determines its degradation rate and strongly influences the period length of the circadian clock.
    Liu Y; Loros J; Dunlap JC
    Proc Natl Acad Sci U S A; 2000 Jan; 97(1):234-9. PubMed ID: 10618401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanism of suppression of circadian rhythms by a critical stimulus.
    Huang G; Wang L; Liu Y
    EMBO J; 2006 Nov; 25(22):5349-57. PubMed ID: 17066078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian conformational change of the Neurospora clock protein FREQUENCY triggered by clustered hyperphosphorylation of a basic domain.
    Querfurth C; Diernfellner AC; Gin E; Malzahn E; Höfer T; Brunner M
    Mol Cell; 2011 Sep; 43(5):713-22. PubMed ID: 21884974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The molecular workings of the Neurospora biological clock.
    Froehlich AC; Pregueiro A; Lee K; Denault D; Colot H; Nowrousian M; Loros JJ; Dunlap JC
    Novartis Found Symp; 2003; 253():184-98; discussion 102-9, 198-202, 281-4. PubMed ID: 14712922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation-dependent maturation of Neurospora circadian clock protein from a nuclear repressor toward a cytoplasmic activator.
    Schafmeier T; Káldi K; Diernfellner A; Mohr C; Brunner M
    Genes Dev; 2006 Feb; 20(3):297-306. PubMed ID: 16421276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential regulation of phosphorylation, structure, and stability of circadian clock protein FRQ isoforms.
    Chen X; Liu X; Gan X; Li S; Ma H; Zhang L; Wang P; Li Y; Huang T; Yang X; Fang L; Liang Y; Wu J; Chen T; Zhou Z; Liu X; Guo J
    J Biol Chem; 2023 Apr; 299(4):104597. PubMed ID: 36898580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CKI and CKII mediate the FREQUENCY-dependent phosphorylation of the WHITE COLLAR complex to close the Neurospora circadian negative feedback loop.
    He Q; Cha J; He Q; Lee HC; Yang Y; Liu Y
    Genes Dev; 2006 Sep; 20(18):2552-65. PubMed ID: 16980584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WC-2 mediates WC-1-FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora.
    Denault DL; Loros JJ; Dunlap JC
    EMBO J; 2001 Jan; 20(1-2):109-17. PubMed ID: 11226161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of prd circadian clock mutations on FRQ-less rhythms in Neurospora.
    Li S; Lakin-Thomas P
    J Biol Rhythms; 2010 Apr; 25(2):71-80. PubMed ID: 20348458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Posttranslational regulation of Neurospora circadian clock by CK1a-dependent phosphorylation.
    Querfurth C; Diernfellner A; Heise F; Lauinger L; Neiss A; Tataroglu O; Brunner M; Schafmeier T
    Cold Spring Harb Symp Quant Biol; 2007; 72():177-83. PubMed ID: 18419275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Setting the pace of the Neurospora circadian clock by multiple independent FRQ phosphorylation events.
    Tang CT; Li S; Long C; Cha J; Huang G; Li L; Chen S; Liu Y
    Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10722-7. PubMed ID: 19506251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.