These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 14871932)

  • 1. Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells.
    Rutherford JC; Bird AJ
    Eukaryot Cell; 2004 Feb; 3(1):1-13. PubMed ID: 14871932
    [No Abstract]   [Full Text] [Related]  

  • 2. Metal-ion regulation of gene expression in yeast.
    Winge DR; Jensen LT; Srinivasan C
    Curr Opin Chem Biol; 1998 Apr; 2(2):216-21. PubMed ID: 9667925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hammering out details: regulating metal levels in eukaryotes.
    Ehrensberger KM; Bird AJ
    Trends Biochem Sci; 2011 Oct; 36(10):524-31. PubMed ID: 21840721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression profiling and phenotype analyses of S. cerevisiae in response to changing copper reveals six genes with new roles in copper and iron metabolism.
    van Bakel H; Strengman E; Wijmenga C; Holstege FC
    Physiol Genomics; 2005 Aug; 22(3):356-67. PubMed ID: 15886332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular biology of iron and zinc uptake in eukaryotes.
    Eide D
    Curr Opin Cell Biol; 1997 Aug; 9(4):573-7. PubMed ID: 9263657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional genomics and metal metabolism.
    Eide DJ
    Genome Biol; 2001; 2(10):REVIEWS1028. PubMed ID: 11597338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal ion metabolism. The copper-iron connection.
    Chang A; Fink GR
    Curr Biol; 1994 Jun; 4(6):532-3. PubMed ID: 7922375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinatorial control of yeast FET4 gene expression by iron, zinc, and oxygen.
    Waters BM; Eide DJ
    J Biol Chem; 2002 Sep; 277(37):33749-57. PubMed ID: 12095998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cti6 is an Rpd3-Sin3 histone deacetylase-associated protein required for growth under iron-limiting conditions in Saccharomyces cerevisiae.
    Puig S; Lau M; Thiele DJ
    J Biol Chem; 2004 Jul; 279(29):30298-306. PubMed ID: 15133041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ace1 prevents intracellular copper accumulation by regulating Fet3 expression and thereby restricting Aft1 activity.
    Gaspar-Cordeiro A; Marques Caetano S; Amaral C; Rodrigues-Pousada C; Pimentel C
    FEBS J; 2018 May; 285(10):1861-1872. PubMed ID: 29604179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Superoxide dismutase--its structure, function and phylogeny].
    Kwiatowski JM
    Postepy Biochem; 1988; 34(4):311-33. PubMed ID: 3077654
    [No Abstract]   [Full Text] [Related]  

  • 12. Overexpression of ctr1Δ300, a high-affinity copper transporter with deletion of the cytosolic C-terminus in Saccharomyces cerevisiae under excess copper, leads to disruption of transition metal homeostasis and transcriptional remodelling of cellular processes.
    Schuller A; Auffermann G; Zoschke K; Schmidt U; Ostermann K; Rödel G
    Yeast; 2013 May; 30(5):201-18. PubMed ID: 23576094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saccharomyces cerevisiae mutants altered in vacuole function are defective in copper detoxification and iron-responsive gene transcription.
    Szczypka MS; Zhu Z; Silar P; Thiele DJ
    Yeast; 1997 Dec; 13(15):1423-35. PubMed ID: 9434348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eukaryotic gene regulation: simple vs complex models.
    Swaffield JC; Johnston SA
    SAAS Bull Biochem Biotechnol; 1991 Jan; 4():17-9. PubMed ID: 1367248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular biology of metal ion transport in Saccharomyces cerevisiae.
    Eide DJ
    Annu Rev Nutr; 1998; 18():441-69. PubMed ID: 9706232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper-regulatory domain involved in gene expression.
    Winge DR
    Prog Nucleic Acid Res Mol Biol; 1998; 58():165-95. PubMed ID: 9308366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of translation in eukaryotic systems.
    Kozak M
    Annu Rev Cell Biol; 1992; 8():197-225. PubMed ID: 1335743
    [No Abstract]   [Full Text] [Related]  

  • 18. Lack of DNA helicase Pif1 disrupts zinc and iron homoeostasis in yeast.
    Guirola M; Barreto L; Pagani A; Romagosa M; Casamayor A; Atrian S; Ariño J
    Biochem J; 2010 Dec; 432(3):595-605. PubMed ID: 20858222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating naive Bayes models and external knowledge to examine copper and iron homeostasis in S. cerevisiae.
    Moler EJ; Radisky DC; Mian IS
    Physiol Genomics; 2000 Dec; 4(2):127-135. PubMed ID: 11120873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping of the DNA binding domain of the copper-responsive transcription factor Mac1 from Saccharomyces cerevisiae.
    Jensen LT; Posewitz MC; Srinivasan C; Winge DR
    J Biol Chem; 1998 Sep; 273(37):23805-11. PubMed ID: 9726991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.