These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 14872260)

  • 1. Variability of spike trains and the processing of temporal patterns of acoustic signals-problems, constraints, and solutions.
    Ronacher B; Franz A; Wohlgemuth S; Hennig RM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Apr; 190(4):257-77. PubMed ID: 14872260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representation of acoustic communication signals by insect auditory receptor neurons.
    Machens CK; Stemmler MB; Prinz P; Krahe R; Ronacher B; Herz AV
    J Neurosci; 2001 May; 21(9):3215-27. PubMed ID: 11312306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination of acoustic communication signals by grasshoppers (Chorthippus biguttulus): temporal resolution, temporal integration, and the impact of intrinsic noise.
    Ronacher B; Wohlgemuth S; Vogel A; Krahe R
    J Comp Psychol; 2008 Aug; 122(3):252-63. PubMed ID: 18729653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing of acoustic signals in grasshoppers - a neuroethological approach towards female choice.
    Ronacher B; Stange N
    J Physiol Paris; 2013; 107(1-2):41-50. PubMed ID: 22728472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence of temporal resolution in an insect nervous system.
    Franz A; Ronacher B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 May; 188(4):261-71. PubMed ID: 12012097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spike-train variability of auditory neurons in vivo: dynamic responses follow predictions from constant stimuli.
    Schaette R; Gollisch T; Herz AV
    J Neurophysiol; 2005 Jun; 93(6):3270-81. PubMed ID: 15689392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural correlations increase between consecutive processing levels in the auditory system of locusts.
    Vogel A; Ronacher B
    J Neurophysiol; 2007 May; 97(5):3376-85. PubMed ID: 17360818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory discrimination of amplitude modulations based on metric distances of spike trains.
    Wohlgemuth S; Ronacher B
    J Neurophysiol; 2007 Apr; 97(4):3082-92. PubMed ID: 17314239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increase of neuronal response variability at higher processing levels as revealed by simultaneous recordings.
    Vogel A; Hennig RM; Ronacher B
    J Neurophysiol; 2005 Jun; 93(6):3548-59. PubMed ID: 15716366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal integration at consecutive processing stages in the auditory pathway of the grasshopper.
    Wirtssohn S; Ronacher B
    J Neurophysiol; 2015 Apr; 113(7):2280-8. PubMed ID: 25609104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spike-timing precision underlies the coding efficiency of auditory receptor neurons.
    Rokem A; Watzl S; Gollisch T; Stemmler M; Herz AV; Samengo I
    J Neurophysiol; 2006 Apr; 95(4):2541-52. PubMed ID: 16354733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-spike latency of auditory neurons revisited.
    Heil P
    Curr Opin Neurobiol; 2004 Aug; 14(4):461-7. PubMed ID: 15321067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating receptive fields in the presence of spike-time jitter.
    Gollisch T
    Network; 2006 Jun; 17(2):103-29. PubMed ID: 16818393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intensity invariance properties of auditory neurons compared to the statistics of relevant natural signals in grasshoppers.
    Clemens J; Weschke G; Vogel A; Ronacher B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Apr; 196(4):285-97. PubMed ID: 20213109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformations of an auditory temporal code in the medulla of a sound-producing fish.
    Kozloski J; Crawford JD
    J Neurosci; 2000 Mar; 20(6):2400-8. PubMed ID: 10704514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A robust and biologically plausible spike pattern recognition network.
    Larson E; Perrone BP; Sen K; Billimoria CP
    J Neurosci; 2010 Nov; 30(46):15566-72. PubMed ID: 21084611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The origin of adaptation in the auditory pathway of locusts is specific to cell type and function.
    Hildebrandt KJ; Benda J; Hennig RM
    J Neurosci; 2009 Feb; 29(8):2626-36. PubMed ID: 19244538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal adaptation improves the recognition of temporal patterns in a grasshopper.
    Ronacher B; Hennig RM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Apr; 190(4):311-9. PubMed ID: 14767599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal processing in sensory systems.
    Grothe B; Klump GM
    Curr Opin Neurobiol; 2000 Aug; 10(4):467-73. PubMed ID: 10981615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of temporal regularity of spike train responses in auditory nerve fibers of the green treefrog.
    Lim D; Capranica RR
    J Neurosci Methods; 1994 Jun; 52(2):203-13. PubMed ID: 7967723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.