These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 14872533)

  • 1. Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings.
    Bosshard HR; Marti DN; Jelesarov I
    J Mol Recognit; 2004; 17(1):1-16. PubMed ID: 14872533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of direct and cooperative contributions towards the strength of buried hydrogen bonds and salt bridges.
    Albeck S; Unger R; Schreiber G
    J Mol Biol; 2000 May; 298(3):503-20. PubMed ID: 10772866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface salt bridges, double-mutant cycles, and protein stability: an experimental and computational analysis of the interaction of the Asp 23 side chain with the N-terminus of the N-terminal domain of the ribosomal protein l9.
    Luisi DL; Snow CD; Lin JJ; Hendsch ZS; Tidor B; Raleigh DP
    Biochemistry; 2003 Jun; 42(23):7050-60. PubMed ID: 12795600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Close-range electrostatic interactions in proteins.
    Kumar S; Nussinov R
    Chembiochem; 2002 Jul; 3(7):604-17. PubMed ID: 12324994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the pH dependence of protein stability.
    Yang AS; Honig B
    J Mol Biol; 1993 May; 231(2):459-74. PubMed ID: 8510157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt bridge stability in monomeric proteins.
    Kumar S; Nussinov R
    J Mol Biol; 1999 Nov; 293(5):1241-55. PubMed ID: 10547298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal versus guanidine-induced unfolding of ubiquitin. An analysis in terms of the contributions from charge-charge interactions to protein stability.
    Ibarra-Molero B; Loladze VV; Makhatadze GI; Sanchez-Ruiz JM
    Biochemistry; 1999 Jun; 38(25):8138-49. PubMed ID: 10387059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing pKa computation in proteins with pH adapted conformations.
    Kieseritzky G; Knapp EW
    Proteins; 2008 May; 71(3):1335-48. PubMed ID: 18058906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic stabilization of a thermophilic cold shock protein.
    Perl D; Schmid FX
    J Mol Biol; 2001 Oct; 313(2):343-57. PubMed ID: 11800561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of the hyperthermophilic protein sac7d from Sulfolobus acidocaldarius: contribution of salt bridges to thermostability.
    de Bakker PI; Hünenberger PH; McCammon JA
    J Mol Biol; 1999 Jan; 285(4):1811-30. PubMed ID: 9917414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic contribution to the thermodynamic and kinetic stability of the homotrimeric coiled coil Lpp-56: A computational study.
    Bjelić S; Wieninger S; Jelesarov I; Karshikoff A
    Proteins; 2008 Feb; 70(3):810-22. PubMed ID: 17729276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse electrostatic effect: electrostatic repulsion in the unfolded state stabilizes a leucine zipper.
    Marti DN; Bosshard HR
    Biochemistry; 2004 Oct; 43(39):12436-47. PubMed ID: 15449933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining the role of salt bridges in protein stability.
    Jelesarov I; Karshikoff A
    Methods Mol Biol; 2009; 490():227-60. PubMed ID: 19157086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic interactions contribute to reduced heat capacity change of unfolding in a thermophilic ribosomal protein l30e.
    Lee CF; Allen MD; Bycroft M; Wong KB
    J Mol Biol; 2005 Apr; 348(2):419-31. PubMed ID: 15811378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nature of the free energy barriers to two-state folding.
    Akmal A; Muñoz V
    Proteins; 2004 Oct; 57(1):142-52. PubMed ID: 15326600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein binding versus protein folding: the role of hydrophilic bridges in protein associations.
    Xu D; Lin SL; Nussinov R
    J Mol Biol; 1997 Jan; 265(1):68-84. PubMed ID: 8995525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonnative electrostatic interactions can modulate protein folding: molecular dynamics with a grain of salt.
    Azia A; Levy Y
    J Mol Biol; 2009 Oct; 393(2):527-42. PubMed ID: 19683007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic interactions in leucine zippers: thermodynamic analysis of the contributions of Glu and His residues and the effect of mutating salt bridges.
    Marti DN; Bosshard HR
    J Mol Biol; 2003 Jul; 330(3):621-37. PubMed ID: 12842476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the role of electrostatic interactions in the design of protein-protein interfaces.
    Sheinerman FB; Honig B
    J Mol Biol; 2002 Apr; 318(1):161-77. PubMed ID: 12054776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.