These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 14873849)

  • 1. Walking spinal carnivores.
    SHURRAGER PS; DYKMAN RA
    J Comp Physiol Psychol; 1951 Jun; 44(3):252-62. PubMed ID: 14873849
    [No Abstract]   [Full Text] [Related]  

  • 2. Spinal and brain control of human walking: implications for retraining of walking.
    Yang JF; Gorassini M
    Neuroscientist; 2006 Oct; 12(5):379-89. PubMed ID: 16957000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal cord control of movement: implications for locomotor rehabilitation following spinal cord injury.
    Field-Fote EC
    Phys Ther; 2000 May; 80(5):477-84. PubMed ID: 10792858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential distribution of interneurons in the neural networks that control walking in the mudpuppy (Necturus maculatus) spinal cord.
    Cheng J; Jovanovic K; Aoyagi Y; Bennett DJ; Han Y; Stein RB
    Exp Brain Res; 2002 Jul; 145(2):190-8. PubMed ID: 12110959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Getting the spinal cord to think for itself.
    Kalb RG
    Arch Neurol; 2003 Jun; 60(6):805-8. PubMed ID: 12810482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinal cord maps of spatiotemporal alpha-motoneuron activation in humans walking at different speeds.
    Ivanenko YP; Poppele RE; Lacquaniti F
    J Neurophysiol; 2006 Feb; 95(2):602-18. PubMed ID: 16282202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Teaching the spinal cord to walk.
    Wickelgren I
    Science; 1998 Jan; 279(5349):319-21. PubMed ID: 9454324
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of movement-related afferent inputs on spinal reflexes evoked by transcutaneous spinal cord stimulation during robot-assisted passive stepping.
    Masugi Y; Kawashima N; Inoue D; Nakazawa K
    Neurosci Lett; 2016 Aug; 627():100-6. PubMed ID: 27235576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation effects of epidural spinal cord stimulation on muscle activities during walking.
    Huang H; He J; Herman R; Carhart MR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):14-23. PubMed ID: 16562627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The physiology of walking (up-date)].
    Loyber I; Villagra MB
    Rev Fac Cien Med Univ Nac Cordoba; 1981; 39(1-4):73-80. PubMed ID: 7347874
    [No Abstract]   [Full Text] [Related]  

  • 11. New technique for drug application to the spinal cord of walking mice.
    Akay T; Fouad K; Pearson KG
    J Neurosci Methods; 2008 Jun; 171(1):39-47. PubMed ID: 18355923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initiation and modulation of locomotor circuitry output with multisite transcutaneous electrical stimulation of the spinal cord in noninjured humans.
    Gerasimenko Y; Gorodnichev R; Puhov A; Moshonkina T; Savochin A; Selionov V; Roy RR; Lu DC; Edgerton VR
    J Neurophysiol; 2015 Feb; 113(3):834-42. PubMed ID: 25376784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal organization of alpha-motoneuron activity in the human spinal cord during different gaits and gait transitions.
    Ivanenko YP; Cappellini G; Poppele RE; Lacquaniti F
    Eur J Neurosci; 2008 Jun; 27(12):3351-68. PubMed ID: 18598271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central pattern generators of the mammalian spinal cord.
    Frigon A
    Neuroscientist; 2012 Feb; 18(1):56-69. PubMed ID: 21518815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laufband therapy based on 'rules of spinal locomotion' is effective in spinal cord injured persons.
    Wernig A; Müller S; Nanassy A; Cagol E
    Eur J Neurosci; 1995 Apr; 7(4):823-9. PubMed ID: 7620630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural control of limb coordination. II. Hatching and walking motor output patterns in the absence of input from the brain.
    Bekoff A; Kauer JA; Fulstone A; Summers TR
    Exp Brain Res; 1989; 74(3):609-17. PubMed ID: 2707336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a spinal stepping generator in man. Electrophysiological study.
    Bussel B; Roby-Brami A; Néris OR; Yakovleff A
    Acta Neurobiol Exp (Wars); 1996; 56(1):465-8. PubMed ID: 8787207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of peripheral feedback in the generation of stepping movements during epidural stimulation of the spinal cord.
    Musienko PE; Bogacheva IN; Gerasimenko YP
    Neurosci Behav Physiol; 2007 Feb; 37(2):181-90. PubMed ID: 17187210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site of origin and reflex behavior of postsynaptic negative potentials recorded from the spinal cord.
    MCCOUCH GP; AUSTIN GM
    Yale J Biol Med; 1955 Dec-1956 Feb; 28(3-4):372-9. PubMed ID: 13291862
    [No Abstract]   [Full Text] [Related]  

  • 20. [Spinal cord stepping electrostimulation as a method for recovery of locomotor activity in vertebrogenic myelopathies].
    Shapkova EIu; Mushkin AIu
    Med Tekh; 2002; (6):29-32. PubMed ID: 12506746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.