These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 1489934)
1. The enzymatic formation and chemical reactivity of quinone methides correlate with alkylphenol-induced toxicity in rat hepatocytes. Bolton JL; Valerio LG; Thompson JA Chem Res Toxicol; 1992; 5(6):816-22. PubMed ID: 1489934 [TBL] [Abstract][Full Text] [Related]
2. Lung toxicity and tumor promotion by hydroxylated derivatives of 2,6-di-tert-butyl-4-methylphenol (BHT) and 2-tert-butyl-4-methyl-6-iso-propylphenol: correlation with quinone methide reactivity. Kupfer R; Dwyer-Nield LD; Malkinson AM; Thompson JA Chem Res Toxicol; 2002 Aug; 15(8):1106-12. PubMed ID: 12184795 [TBL] [Abstract][Full Text] [Related]
3. The influence of 4-alkyl substituents on the formation and reactivity of 2-methoxy-quinone methides: evidence that extended pi-conjugation dramatically stabilizes the quinone methide formed from eugenol. Bolton JL; Comeau E; Vukomanovic V Chem Biol Interact; 1995 Apr; 95(3):279-90. PubMed ID: 7728898 [TBL] [Abstract][Full Text] [Related]
4. Alkylation of 2'-deoxynucleosides and DNA by quinone methides derived from 2,6-di-tert-butyl-4-methylphenol. Lewis MA; Yoerg DG; Bolton JL; Thompson JA Chem Res Toxicol; 1996 Dec; 9(8):1368-74. PubMed ID: 8951242 [TBL] [Abstract][Full Text] [Related]
5. Influence of quinone methide reactivity on the alkylation of thiol and amino groups in proteins: studies utilizing amino acid and peptide models. Bolton JL; Turnipseed SB; Thompson JA Chem Biol Interact; 1997 Nov; 107(3):185-200. PubMed ID: 9448752 [TBL] [Abstract][Full Text] [Related]
6. Role of quinone methide in the in vitro toxicity of the skin tumor promoter butylated hydroxytoluene hydroperoxide. Guyton KZ; Thompson JA; Kensler TW Chem Res Toxicol; 1993; 6(5):731-8. PubMed ID: 8292753 [TBL] [Abstract][Full Text] [Related]
7. o-Methoxy-4-alkylphenols that form quinone methides of intermediate reactivity are the most toxic in rat liver slices. Thompson DC; Perera K; Krol ES; Bolton JL Chem Res Toxicol; 1995; 8(3):323-7. PubMed ID: 7578916 [TBL] [Abstract][Full Text] [Related]
8. Formation and reactivity of alternative quinone methides from butylated hydroxytoluene: possible explanation for species-specific pneumotoxicity. Bolton JL; Sevestre H; Ibe BO; Thompson JA Chem Res Toxicol; 1990; 3(1):65-70. PubMed ID: 2131827 [TBL] [Abstract][Full Text] [Related]
9. Bioactivation of estrone and its catechol metabolites to quinoid-glutathione conjugates in rat liver microsomes. Iverson SL; Shen L; Anlar N; Bolton JL Chem Res Toxicol; 1996 Mar; 9(2):492-9. PubMed ID: 8839054 [TBL] [Abstract][Full Text] [Related]
10. Oxidation of butylated hydroxytoluene to toxic metabolites. Factors influencing hydroxylation and quinone methide formation by hepatic and pulmonary microsomes. Bolton JL; Thompson JA Drug Metab Dispos; 1991; 19(2):467-72. PubMed ID: 1676656 [TBL] [Abstract][Full Text] [Related]
11. Studies using structural analogs and inbred strain differences to support a role for quinone methide metabolites of butylated hydroxytoluene (BHT) in mouse lung tumor promotion. Thompson JA; Carlson TJ; Sun Y; Dwyer-Nield LD; Malkinson AM Toxicology; 2001 Mar; 160(1-3):197-205. PubMed ID: 11246140 [TBL] [Abstract][Full Text] [Related]
12. Comparative metabolism, covalent binding and toxicity of BHT congeners in rat liver slices. Reed M; Fujiwara H; Thompson DC Chem Biol Interact; 2001 Nov; 138(2):155-70. PubMed ID: 11672698 [TBL] [Abstract][Full Text] [Related]
13. Metabolic activation of butylated hydroxytoluene by mouse bronchiolar Clara cells. Bolton JL; Thompson JA; Allentoff AJ; Miley FB; Malkinson AM Toxicol Appl Pharmacol; 1993 Nov; 123(1):43-9. PubMed ID: 8236260 [TBL] [Abstract][Full Text] [Related]
14. Evidence that 4-allyl-o-quinones spontaneously rearrange to their more electrophilic quinone methides: potential bioactivation mechanism for the hepatocarcinogen safrole. Bolton JL; Acay NM; Vukomanovic V Chem Res Toxicol; 1994; 7(3):443-50. PubMed ID: 8075378 [TBL] [Abstract][Full Text] [Related]
15. Responses of tumorigenic and non-tumorigenic mouse lung epithelial cell lines to electrophilic metabolites of the tumor promoter butylated hydroxytoluene. Sun Y; Dwyer-Nield LD; Malkinson AM; Zhang YL; Thompson JA Chem Biol Interact; 2003 Mar; 145(1):41-51. PubMed ID: 12606153 [TBL] [Abstract][Full Text] [Related]
16. Quinone methide formation from para isomers of methylphenol (cresol), ethylphenol, and isopropylphenol: relationship to toxicity. Thompson DC; Perera K; London R Chem Res Toxicol; 1995; 8(1):55-60. PubMed ID: 7703367 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of glutathione S-transferase P1-1 in mouse lung epithelial cells by the tumor promoter 2,6-di-tert-butyl-4-methylene-2,5-cyclohexadienone (BHT-quinone methide): protein adducts investigated by electrospray mass spectrometry. Lemercier JN; Meier BW; Gomez JD; Thompson JA Chem Res Toxicol; 2004 Dec; 17(12):1675-83. PubMed ID: 15606144 [TBL] [Abstract][Full Text] [Related]
18. 4-Hydroxylated metabolites of the antiestrogens tamoxifen and toremifene are metabolized to unusually stable quinone methides. Fan PW; Zhang F; Bolton JL Chem Res Toxicol; 2000 Jan; 13(1):45-52. PubMed ID: 10649966 [TBL] [Abstract][Full Text] [Related]
19. Immunochemical visualization and identification of rat liver proteins adducted by 2,6-di-tert-butyl-4-methylphenol (BHT). Reed M; Thompson DC Chem Res Toxicol; 1997 Oct; 10(10):1109-17. PubMed ID: 9348433 [TBL] [Abstract][Full Text] [Related]
20. Immunochemical and proteomic analysis of covalent adducts formed by quinone methide tumor promoters in mouse lung epithelial cell lines. Meier BW; Gomez JD; Zhou A; Thompson JA Chem Res Toxicol; 2005 Oct; 18(10):1575-85. PubMed ID: 16533022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]