These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 1490243)

  • 21. Fixation stability and macular light sensitivity in patients with diabetic maculopathy: a microperimetric study with a scanning laser ophthalmoscope.
    Kube T; Schmidt S; Toonen F; Kirchhof B; Wolf S
    Ophthalmologica; 2005; 219(1):16-20. PubMed ID: 15627822
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Topographical reproducibility of small scotoma using computerised dynamic fixation target.
    Mutlukan E
    Doc Ophthalmol; 1995-1996; 91(3):223-31. PubMed ID: 8886586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visual influence on the slow oscillatory eye movement discovered during a visual fixation task.
    Zhang B; Pansell T; Ygge J; Bolzani R
    Vision Res; 2011 Oct; 51(19):2139-44. PubMed ID: 21871476
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Age-dependent changes in visual sensitivity induced by moving fixation points in adduction and abduction using imo perimetry.
    Shoji T; Mine I; Kumagai T; Kosaka A; Yoshikawa Y; Shinoda K
    Sci Rep; 2020 Dec; 10(1):21175. PubMed ID: 33273620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fixation pattern in healthy subjects during microperimetry with the scanning laser ophthalmoscope.
    Källmark FP; Ygge J
    Med Sci Monit; 2008 Jun; 14(6):CR311-315. PubMed ID: 18509274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fixation stability during binocular viewing in patients with age-related macular degeneration.
    Tarita-Nistor L; Brent MH; Steinbach MJ; González EG
    Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1887-93. PubMed ID: 21071732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fixation stability using radial gratings in patients with age-related macular degeneration.
    González EG; Teichman J; Lillakas L; Markowitz SN; Steinbach MJ
    Can J Ophthalmol; 2006 Jun; 41(3):333-9. PubMed ID: 16767189
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Localization of speed differences of context stimuli during fixation and smooth pursuit eye movements.
    Braun DI; Schütz AC; Gegenfurtner KR
    Vision Res; 2010 Dec; 50(24):2740-9. PubMed ID: 20709094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clinical alternative for reducing the time needed to perform automated threshold perimetry.
    Fingeret M
    J Am Optom Assoc; 1995 Nov; 66(11):699-705. PubMed ID: 8576535
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of fixation instability on multifocal VEP (mfVEP) responses in amblyopes.
    Zhang B; Stevenson SS; Cheng H; Laron M; Kumar G; Tong J; Chino YM
    J Vis; 2008 Mar; 8(3):16.1-14. PubMed ID: 18484822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A modified method for measuring uniocular fields of fixation: reliability in healthy subjects and in patients with Graves orbitopathy.
    Haggerty H; Richardson S; Mitchell KW; Dickinson AJ
    Arch Ophthalmol; 2005 Mar; 123(3):356-62. PubMed ID: 15767478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantifying adaptation and fatigue effects in frequency doubling perimetry.
    Anderson AJ; McKendrick AM
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):943-8. PubMed ID: 17251498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of functional visual field loss by automated static perimetry.
    Frisén L
    Acta Ophthalmol; 2014 Dec; 92(8):805-9. PubMed ID: 24698019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Traffic gap judgment in people with significant peripheral field loss.
    Cheong AM; Geruschat DR; Congdon N
    Optom Vis Sci; 2008 Jan; 85(1):26-36. PubMed ID: 18174838
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perisaccadic mislocalization without saccadic eye movements.
    Ostendorf F; Fischer C; Gaymard B; Ploner CJ
    Neuroscience; 2006 Feb; 137(3):737-45. PubMed ID: 16289834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of horizontal convergence on slow oscillatory eye movements during visual fixation.
    Zhang B; Bolzani R; Öqvist Seimyr G; Ygge J; Pansell T
    Invest Ophthalmol Vis Sci; 2013 Dec; 54(13):8091-4. PubMed ID: 24222310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Fixation disparity with the Pola pointing test: not representative for eye position under natural viewing conditions].
    Gerling J; Ball M; Bömer T; Bach M; Kommerell G
    Klin Monbl Augenheilkd; 1998 Apr; 212(4):226-33. PubMed ID: 9644669
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of eye testing order on automated perimetry results using the Swedish Interactive Threshold Algorithm standard 24-2.
    Barkana Y; Gerber Y; Mora R; Liebmann JM; Ritch R
    Arch Ophthalmol; 2006 Jun; 124(6):781-4. PubMed ID: 16769830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ocular fixation during eye and head tracking with and without a visual cue to head position.
    Fogt N; Luthman N
    Aviat Space Environ Med; 2002 Oct; 73(10):1031-7. PubMed ID: 12398268
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Humphrey Perimetry and Retinal Diseases].
    Iijima H
    Nippon Ganka Gakkai Zasshi; 2016 Mar; 120(3):190-208; discussion 209. PubMed ID: 27164757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.