BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 1490592)

  • 1. Uniform designation for genes of the Calvin-Benson-Bassham reductive pentose phosphate pathway of bacteria.
    Tabita FR; Gibson JL; Bowien B; Dijkhuizen L; Meijer WG
    FEMS Microbiol Lett; 1992 Dec; 78(2-3):107-10. PubMed ID: 1490592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression of the CO2 fixation operons of Rhodobacter sphaeroides by the Prr/Reg two-component system during chemoautotrophic growth.
    Gibson JL; Dubbs JM; Tabita FR
    J Bacteriol; 2002 Dec; 184(23):6654-64. PubMed ID: 12426354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Calvin cycle enzyme pentose-5-phosphate 3-epimerase is encoded within the cfx operons of the chemoautotroph Alcaligenes eutrophus.
    Kusian B; Yoo JG; Bednarski R; Bowien B
    J Bacteriol; 1992 Nov; 174(22):7337-44. PubMed ID: 1429456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular regulation of the reductive pentose phosphate pathway in Proteobacteria and Cyanobacteria.
    Gibson JL; Tabita FR
    Arch Microbiol; 1996 Sep; 166(3):141-50. PubMed ID: 8703190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maintenance and control of redox poise in Rhodobacter capsulatus strains deficient in the Calvin-Benson-Bassham pathway.
    Tichi MA; Tabita FR
    Arch Microbiol; 2000 Nov; 174(5):322-33. PubMed ID: 11131022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of the cbbLcbbS and cbbM genes and distinct organization of the cbb Calvin cycle structural genes of Rhodobacter capsulatus.
    Paoli GC; Morgan NS; Tabita FR; Shively JM
    Arch Microbiol; 1995 Dec; 164(6):396-405. PubMed ID: 8588741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary structure and phylogeny of the Calvin cycle enzymes transketolase and fructosebisphosphate aldolase of Xanthobacter flavus.
    van den Bergh ER; Baker SC; Raggers RJ; Terpstra P; Woudstra EC; Dijkhuizen L; Meijer WG
    J Bacteriol; 1996 Feb; 178(3):888-93. PubMed ID: 8550527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of cfxR, an activator gene of autotrophic CO2 fixation in Alcaligenes eutrophus.
    Windhövel U; Bowien B
    Mol Microbiol; 1991 Nov; 5(11):2695-705. PubMed ID: 1779759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The form II fructose 1,6-bisphosphatase and phosphoribulokinase genes form part of a large operon in Rhodobacter sphaeroides: primary structure and insertional mutagenesis analysis.
    Gibson JL; Chen JH; Tower PA; Tabita FR
    Biochemistry; 1990 Sep; 29(35):8085-93. PubMed ID: 2175647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetate-dependent photoheterotrophic growth and the differential requirement for the Calvin-Benson-Bassham reductive pentose phosphate cycle in Rhodobacter sphaeroides and Rhodopseudomonas palustris.
    Laguna R; Tabita FR; Alber BE
    Arch Microbiol; 2011 Feb; 193(2):151-4. PubMed ID: 21104179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative control of carbon, nitrogen, hydrogen, and sulfur metabolism: the central role of the Calvin-Benson-Bassham cycle.
    Laguna R; Joshi GS; Dangel AW; Luther AK; Tabita FR
    Adv Exp Med Biol; 2010; 675():265-71. PubMed ID: 20532746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetics and control of CO(2) assimilation in the chemoautotroph Ralstonia eutropha.
    Bowien B; Kusian B
    Arch Microbiol; 2002 Aug; 178(2):85-93. PubMed ID: 12115053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification, expression, and deduced primary structure of transketolase and other enzymes encoded within the form II CO2 fixation operon of Rhodobacter sphaeroides.
    Chen JH; Gibson JL; McCue LA; Tabita FR
    J Biol Chem; 1991 Oct; 266(30):20447-52. PubMed ID: 1939098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the genes forming the distal parts of the two cbb CO2 fixation operons from Alcaligenes eutrophus.
    Schäferjohann J; Yoo JG; Bowien B
    Arch Microbiol; 1995 Apr; 163(4):291-9. PubMed ID: 7763137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of CbbR-binding affinity to the upstream of cbbF and cfxB on the metabolic effector in Rhodobacter sphaeroides.
    Lee HJ; Sekhon SS; Kim YS; Park JY; Kim YH; Min J
    Curr Microbiol; 2015 Jun; 70(6):816-20. PubMed ID: 25708583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of cysteine 160 in thiamine diphosphate binding of the Calvin-Benson-Bassham cycle transketolase of Rhodobacter sphaeroides.
    Bobst CE; Tabita FR
    Arch Biochem Biophys; 2004 Jun; 426(1):43-54. PubMed ID: 15130781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria.
    Kusian B; Bowien B
    FEMS Microbiol Rev; 1997 Sep; 21(2):135-55. PubMed ID: 9348665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of plasmid DNA sequences that complement Rhodobacter sphaeroides mutants deficient in the capacity for CO2-dependent growth.
    Rainey AM; Tabita FR
    J Gen Microbiol; 1989 Jun; 135(6):1699-713. PubMed ID: 2515249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide sequence of an operon in Nostoc sp. strain ATCC 29133 encoding four genes of the oxidative pentose phosphate cycle.
    Summers ML; Meeks JC; Chu S; Wolf RE
    Plant Physiol; 1995 Jan; 107(1):267-8. PubMed ID: 7870816
    [No Abstract]   [Full Text] [Related]  

  • 20. Protein-protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides.
    Dangel AW; Tabita FR
    Mol Microbiol; 2009 Feb; 71(3):717-29. PubMed ID: 19077171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.