BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 1490601)

  • 1. Luminometric measurement of population activity of genetically modified Pseudomonas fluorescens in the soil.
    Meikle A; Killham K; Prosser JI; Glover LA
    FEMS Microbiol Lett; 1992 Dec; 78(2-3):217-20. PubMed ID: 1490601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system.
    Unge A; Tombolini R; Molbak L; Jansson JK
    Appl Environ Microbiol; 1999 Feb; 65(2):813-21. PubMed ID: 9925621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of temperature on detection of plasmid or chromosomally encoded gfp- and lux-labeled Pseudomonas fluorescens in soil.
    Bunker ST; Bates TC; Oliver JD
    Environ Biosafety Res; 2004; 3(2):83-90. PubMed ID: 15612505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Luminescence-based nonextractive technique for in situ detection of Escherichia coli in soil.
    Rattray EA; Prosser JI; Killham K; Glover LA
    Appl Environ Microbiol; 1990 Nov; 56(11):3368-74. PubMed ID: 2268151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effects of soil factors on root colonization of wheat by luxAB genes-marked Pseudomonas fluorescens Xl6L2].
    Wang P; Hu Z; Li F
    Wei Sheng Wu Xue Bao; 2000 Jun; 40(3):312-7. PubMed ID: 12548998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Luminescence-based detection of activity of starved and viable but nonculturable bacteria.
    Duncan S; Glover LA; Killham K; Prosser JI
    Appl Environ Microbiol; 1994 Apr; 60(4):1308-16. PubMed ID: 8017919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory activity of alginate-encapsulated Pseudomonas fluorescens cells introduced into soil.
    Trevors JT
    Appl Microbiol Biotechnol; 1991 Jun; 35(3):416-9. PubMed ID: 1367541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of a genetically engineered Pseudomonas fluorescens strain through a soil microcosm.
    Trevors JT; van Elsas JD; van Overbeek LS; Starodub ME
    Appl Environ Microbiol; 1990 Feb; 56(2):401-8. PubMed ID: 2106286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of enumeration methods for culturable Pseudomonas fluorescens cells marked with green fluorescent protein.
    Cassidy MB; Leung KT; Lee H; Trevors JT
    J Microbiol Methods; 2000 Apr; 40(2):135-45. PubMed ID: 10699669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of a novel nonantibiotic triple marker gene cassette to monitor high survival of Pseudomonas fluorescens SBW25 on winter wheat in the field.
    Jäderlund L; Hellman M; Sundh I; Bailey MJ; Jansson JK
    FEMS Microbiol Ecol; 2008 Feb; 63(2):156-68. PubMed ID: 18093144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of bioluminescent derivatives of assimilable organic carbon test bacteria.
    Haddix PL; Shaw NJ; LeChevallier MW
    Appl Environ Microbiol; 2004 Feb; 70(2):850-4. PubMed ID: 14766564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudomonas fluorescens dynamics in the soil surface to subsurface transect.
    Langenbach T; Maciel SJ; Neves BC; Hagler AN; Mano DM; Vugman NV
    J Environ Sci Health B; 2006; 41(4):415-25. PubMed ID: 16753960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Boot colonization of wheat by lux-AB genes marked Pseudomonas fluorescens Xl6L2].
    Wang P; Hu Z; Li F
    Wei Sheng Wu Xue Bao; 2000 Apr; 40(2):150-4. PubMed ID: 12548937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of earthworm activity on gene transfer from Pseudomonas fluorescens to indigenous soil bacteria.
    Daane LL; Molina JA; Berry EC; Sadowsky MJ
    Appl Environ Microbiol; 1996 Feb; 62(2):515-21. PubMed ID: 8593052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon limitation induces sigma(S)-dependent gene expression in Pseudomonas fluorescens in soil.
    Koch B; Worm J; Jensen LE; Højberg O; Nybroe O
    Appl Environ Microbiol; 2001 Aug; 67(8):3363-70. PubMed ID: 11472905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tripartite microbial reporter gene system for real-time assays of soil nutrient status.
    Standing D; Meharg AA; Killham K
    FEMS Microbiol Lett; 2003 Mar; 220(1):35-9. PubMed ID: 12644225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An automated technique for most-probable-number (MPN) analysis of densities of phagotrophic protists with lux AB labelled bacteria as growth medium.
    Ekelund F; Christensen S; Rønn R; Buhl E; Jacobsen CS
    J Microbiol Methods; 1999 Nov; 38(3):177-82. PubMed ID: 10541430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. phlD-based genetic diversity and detection of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens.
    De La Fuente L; Mavrodi DV; Landa BB; Thomashow LS; Weller DM
    FEMS Microbiol Ecol; 2006 Apr; 56(1):64-78. PubMed ID: 16542406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural transformation of Acinetobacter sp. strain BD413 with cell lysates of Acinetobacter sp., Pseudomonas fluorescens, and Burkholderia cepacia in soil microcosms.
    Nielsen KM; Smalla K; van Elsas JD
    Appl Environ Microbiol; 2000 Jan; 66(1):206-12. PubMed ID: 10618225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alginate beads as a storage, delivery and containment system for genetically modified PCB degrader and PCB biosensor derivatives of Pseudomonas fluorescens F113.
    Power B; Liu X; Germaine KJ; Ryan D; Brazil D; Dowling DN
    J Appl Microbiol; 2011 May; 110(5):1351-8. PubMed ID: 21395945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.