These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 1490614)

  • 21. Escherichia coli gene purR encoding a repressor protein for purine nucleotide synthesis. Cloning, nucleotide sequence, and interaction with the purF operator.
    Rolfes RJ; Zalkin H
    J Biol Chem; 1988 Dec; 263(36):19653-61. PubMed ID: 3058704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Roles of the GcvA and PurR proteins in negative regulation of the Escherichia coli glycine cleavage enzyme system.
    Wilson RL; Stauffer LT; Stauffer GV
    J Bacteriol; 1993 Aug; 175(16):5129-34. PubMed ID: 8349552
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the MetR binding sites for the glyA gene of Escherichia coli.
    Lorenz E; Stauffer GV
    J Bacteriol; 1995 Jul; 177(14):4113-20. PubMed ID: 7608086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The X-ray structure of the PurR-guanine-purF operator complex reveals the contributions of complementary electrostatic surfaces and a water-mediated hydrogen bond to corepressor specificity and binding affinity.
    Schumacher MA; Glasfeld A; Zalkin H; Brennan RG
    J Biol Chem; 1997 Sep; 272(36):22648-53. PubMed ID: 9278422
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The H-NS protein represses transcription of the eltAB operon, which encodes heat-labile enterotoxin in enterotoxigenic Escherichia coli, by binding to regions downstream of the promoter.
    Yang J; Tauschek M; Strugnell R; Robins-Browne RM
    Microbiology (Reading); 2005 Apr; 151(Pt 4):1199-1208. PubMed ID: 15817787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of lysine 55 in determining the specificity of the purine repressor for its operators through minor groove interactions.
    Glasfeld A; Koehler AN; Schumacher MA; Brennan RG
    J Mol Biol; 1999 Aug; 291(2):347-61. PubMed ID: 10438625
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure-based redesign of corepressor specificity of the Escherichia coli purine repressor by substitution of residue 190.
    Lu F; Schumacher MA; Arvidson DN; Haldimann A; Wanner BL; Zalkin H; Brennan RG
    Biochemistry; 1998 Jan; 37(4):971-82. PubMed ID: 9454587
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of the purine repressor hinge sequence in repressor function.
    Choi KY; Zalkin H
    J Bacteriol; 1994 Mar; 176(6):1767-72. PubMed ID: 8132474
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cooperative MetR binding in the Escherichia coli glyA control region.
    Lorenz E; Stauffer GV
    FEMS Microbiol Lett; 1996 Apr; 137(2-3):147-52. PubMed ID: 8998977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural comparison of the free and DNA-bound forms of the purine repressor DNA-binding domain.
    Nagadoi A; Morikawa S; Nakamura H; Enari M; Kobayashi K; Yamamoto H; Sampei G; Mizobuchi K; Schumacher MA; Brennan RG
    Structure; 1995 Nov; 3(11):1217-24. PubMed ID: 8591032
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The PurR regulon in Lactococcus lactis - transcriptional regulation of the purine nucleotide metabolism and translational machinery.
    Jendresen CB; Martinussen J; Kilstrup M
    Microbiology (Reading); 2012 Aug; 158(Pt 8):2026-2038. PubMed ID: 22679106
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional consequences of exchanging domains between LacI and PurR are mediated by the intervening linker sequence.
    Tungtur S; Egan SM; Swint-Kruse L
    Proteins; 2007 Jul; 68(1):375-88. PubMed ID: 17436321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of Escherichia coli purF. Mutations that define the promoter, operator, and purine repressor gene.
    Rolfes RJ; Zalkin H
    J Biol Chem; 1988 Dec; 263(36):19649-52. PubMed ID: 3058703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA loop formation between Nag repressor molecules bound to its two operator sites is necessary for repression of the nag regulon of Escherichia coli in vivo.
    Plumbridge J; Kolb A
    Mol Microbiol; 1993 Dec; 10(5):973-81. PubMed ID: 7934873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional dissection of the Bacillus subtilis pur operator site.
    Bera AK; Zhu J; Zalkin H; Smith JL
    J Bacteriol; 2003 Jul; 185(14):4099-109. PubMed ID: 12837784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Autoregulation of Escherichia coli purR requires two control sites downstream of the promoter.
    Rolfes RJ; Zalkin H
    J Bacteriol; 1990 Oct; 172(10):5758-66. PubMed ID: 2211510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Definition of a second Bacillus subtilis pur regulon comprising the pur and xpt-pbuX operons plus pbuG, nupG (yxjA), and pbuE (ydhL).
    Johansen LE; Nygaard P; Lassen C; Agersø Y; Saxild HH
    J Bacteriol; 2003 Sep; 185(17):5200-9. PubMed ID: 12923093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of MetR and PurR in the activation of glyA by CsgD in Escherichia coli K-12.
    Chirwa NT; Herrington MB
    Can J Microbiol; 2004 Sep; 50(9):683-90. PubMed ID: 15644921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Action at a distance for glp repressor control of glpTQ transcription in Escherichia coli K-12.
    Yang B; Gerhardt SG; Larson TJ
    Mol Microbiol; 1997 May; 24(3):511-21. PubMed ID: 9179845
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ion concentration and temperature dependence of DNA binding: comparison of PurR and LacI repressor proteins.
    Moraitis MI; Xu H; Matthews KS
    Biochemistry; 2001 Jul; 40(27):8109-17. PubMed ID: 11434780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.