These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 14908886)

  • 1. Toxicological studies of orthophenylphenol (Dowicide 1).
    HODGE HC; MAYNARD EA; BLANCHET HJ; SPENCER HC; ROWE VK
    J Pharmacol Exp Ther; 1952 Feb; 104(2):202-10. PubMed ID: 14908886
    [No Abstract]   [Full Text] [Related]  

  • 2. [Toxicological characteristics of phenols used as antioxidazing agents in edible fats; acute and subacute experiments].
    KARPLIUK Ia
    Vopr Pitan; 1959; 18(4):24-9. PubMed ID: 13676444
    [No Abstract]   [Full Text] [Related]  

  • 3. [Study of phenol compounds of toxicological interest].
    Larini L; Prado AB; de Carvalho D
    Bol Fac Farm Odontol Ribeirao Preto; 1968; 5(1):21-45. PubMed ID: 5248492
    [No Abstract]   [Full Text] [Related]  

  • 4. Toxicological evaluation of polyphenol extract from Acerola (Malpighia emarginata DC.) fruit.
    Hanamura T; Aoki H
    J Food Sci; 2008 May; 73(4):T55-61. PubMed ID: 18460146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Studies on toxicity of meta-aminophenols].
    UKLEJA A
    Acta Pol Pharm; 1954; 11(3):177-82. PubMed ID: 13206811
    [No Abstract]   [Full Text] [Related]  

  • 6. Chromatographic retention-activity relationships for prediction of the toxicity pH-dependence of phenols.
    Bermúdez-Saldaña JM; Escuder-Gilabert L; Medina-Hernández MJ; Villanueva-Camañas RM; Sagrado S
    Chemosphere; 2007 Aug; 69(1):108-17. PubMed ID: 17553545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the toxicity of phenols: using quantitative structure-activity relationship and enthalpy changes to discriminate between possible mechanisms.
    Shadnia H; Wright JS
    Chem Res Toxicol; 2008 Jun; 21(6):1197-204. PubMed ID: 18500785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative structure-activity relationships for predicting the joint toxicity of substituted anilines and phenols to algae.
    Lu GH; Wang C; Tang ZY; Guo XL
    Bull Environ Contam Toxicol; 2007 Feb; 78(2):107-11. PubMed ID: 17415500
    [No Abstract]   [Full Text] [Related]  

  • 9. Quantitative structure-activity relationships for predicting the joint toxicity of substituted anilines and phenols to algae.
    Lu GH; Wang C; Tang ZY; Guo XL
    Bull Environ Contam Toxicol; 2007 Jan; 78(1):73-7. PubMed ID: 17342553
    [No Abstract]   [Full Text] [Related]  

  • 10. Exploring predictive QSAR models for hepatocyte toxicity of phenols using QTMS descriptors.
    Roy K; Popelier PL
    Bioorg Med Chem Lett; 2008 Apr; 18(8):2604-9. PubMed ID: 18378448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limitations of a case-control study on bisphenol A (BPA) serum levels and recurrent miscarriage.
    Berkowitz G
    Hum Reprod; 2006 Feb; 21(2):565-6; author reply 566-7. PubMed ID: 16423835
    [No Abstract]   [Full Text] [Related]  

  • 12. Large effects from small exposures. II. The importance of positive controls in low-dose research on bisphenol A.
    vom Saal FS; Welshons WV
    Environ Res; 2006 Jan; 100(1):50-76. PubMed ID: 16256977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated susceptibility of newborn as compared with young rats to 2-tert-butylphenol and 2,4-di-tert-butylphenol toxicity.
    Hirata-Koizumi M; Hamamura M; Furukawa H; Fukuda N; Ito Y; Wako Y; Yamashita K; Takahashi M; Kamata E; Ema M; Hasegawa R
    Congenit Anom (Kyoto); 2005 Dec; 45(4):146-53. PubMed ID: 16359495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biopartitioning micellar chromatography: an alternative high-throughput method for assessing the ecotoxicity of anilines and phenols.
    Bermúdez-Saldaña JM; Escuder-Gilabert L; Medina-Hernández MJ; Villanueva-Camañas RM; Sagrado S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Jun; 852(1-2):353-61. PubMed ID: 17347057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the toxicity of substituted phenols to aquatic species and its changes in the stream and effluent waters.
    Lee YG; Hwang SH; Kim SD
    Arch Environ Contam Toxicol; 2006 Feb; 50(2):213-9. PubMed ID: 16392020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Experimental sodium pentachlorophenate poisoning in the guinea pig; therapeutic trials].
    VIALLIER J; ROCHE L; BRUNE A
    C R Seances Soc Biol Fil; 1954 Feb; 148(3-4):374-5. PubMed ID: 13173029
    [No Abstract]   [Full Text] [Related]  

  • 17. Experimental carcinogenesis of the lung. II. Influence of phenols in the production of carcinoma.
    Tye R; Stemmer KL
    J Natl Cancer Inst; 1967 Aug; 39(2):175-86. PubMed ID: 18623937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bisphenol A: do recent studies of health effects among humans inform the long-standing debate?
    Dash C; Marcus M; Terry PD
    Mutat Res; 2006; 613(2-3):68-75. PubMed ID: 16757209
    [No Abstract]   [Full Text] [Related]  

  • 19. Classification of toxicity of phenols to Tetrahymena pyriformis and subsequent derivation of QSARs from hydrophobic, ionization and electronic parameters.
    Zhao YH; Yuan X; Su LM; Qin WC; Abraham MH
    Chemosphere; 2009 May; 75(7):866-71. PubMed ID: 19268338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brominated indoles and phenols in marine sediment and water extracts from the north and baltic seas-concentrations and effects.
    Reineke N; Biselli S; Franke S; Francke W; Heinzel N; Hühnerfuss H; Iznaguen H; Kammann U; Theobald N; Vobach M; Wosniok W
    Arch Environ Contam Toxicol; 2006 Aug; 51(2):186-96. PubMed ID: 16583256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.