These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 1490936)

  • 1. Acid-base changes in the running greyhound: contributing variables.
    Pieschl RL; Toll PW; Leith DE; Peterson LJ; Fedde MR
    J Appl Physiol (1985); 1992 Dec; 73(6):2297-304. PubMed ID: 1490936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma [H+] regulation and whole blood [CO2] in exercising ponies.
    Forster HV; Murphy CL; Brice AG; Pan LG; Lowry TF
    J Appl Physiol (1985); 1990 Jan; 68(1):309-15. PubMed ID: 2107165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sprint training enhances ionic regulation during intense exercise in men.
    McKenna MJ; Heigenhauser GJ; McKelvie RS; MacDougall JD; Jones NL
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):687-702. PubMed ID: 9218228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reexamination of Stewart's quantitative analysis of acid-base status.
    Weinstein Y; Magazanik A; Grodjinovsky A; Inbar O; Dlin RA; Stewart PA
    Med Sci Sports Exerc; 1991 Nov; 23(11):1270-5. PubMed ID: 1766343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood ion regulation during repeated maximal exercise and recovery in humans.
    Lindinger MI; Heigenhauser GJ; McKelvie RS; Jones NL
    Am J Physiol; 1992 Jan; 262(1 Pt 2):R126-36. PubMed ID: 1733331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors influencing hydrogen ion concentration in muscle after intense exercise.
    Kowalchuk JM; Heigenhauser GJ; Lindinger MI; Sutton JR; Jones NL
    J Appl Physiol (1985); 1988 Nov; 65(5):2080-9. PubMed ID: 3145275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partition of plasma hydrogen ion concentration changes during repeated sprints.
    Kronfeld DS; Ferrante PL; Taylor LE; Tiegs W
    Equine Vet J Suppl; 1999 Jul; (30):380-3. PubMed ID: 10659286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extreme derangements of acid-base balance in exercise: advantages and limitations of the Stewart analysis.
    Fedde MR; Pieschl RL
    Can J Appl Physiol; 1995 Sep; 20(3):369-79. PubMed ID: 8541799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of acid-base balance in show jumpers before and after exercise.
    Aguilera-Tejero E; Estepa JC; López I; Bas S; Mayer-Valor R; Rodríguez M
    Res Vet Sci; 2000 Apr; 68(2):103-8. PubMed ID: 10756125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The Stewart model. "Modern" approach to the interpretation of the acid-base metabolism].
    Rehm M; Conzen PF; Peter K; Finsterer U
    Anaesthesist; 2004 Apr; 53(4):347-57. PubMed ID: 15088097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hematological and acid-base changes in men during prolonged exercise with and without sodium-lactate infusion.
    Miller BF; Lindinger MI; Fattor JA; Jacobs KA; Leblanc PJ; Duong M; Heigenhauser GJ; Brooks GA
    J Appl Physiol (1985); 2005 Mar; 98(3):856-65. PubMed ID: 15475600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in arterial, mixed venous and intraerythrocytic concentrations of ions in supramaximally exercising horses.
    Bayly WM; Kingston JK; Brown JA; Keegan RD; Greene SA; Sides RH
    Equine Vet J Suppl; 2006 Aug; (36):294-7. PubMed ID: 17402435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in oxygen content and acid-base balance in arterial and portal blood in response to the dietary electrolyte balance in pigs during a 9-h period after a meal.
    Dersjant-Li Y; Verstegen MW; Jansman A; Schulze H; Schrama JW; Verreth JA
    J Anim Sci; 2002 May; 80(5):1233-9. PubMed ID: 12019610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physicochemical analysis of phasic menstrual cycle effects on acid-base balance.
    Preston RJ; Heenan AP; Wolfe LA
    Am J Physiol Regul Integr Comp Physiol; 2001 Feb; 280(2):R481-7. PubMed ID: 11208578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid, electrolyte, and packed cell volume shifts in racing greyhounds.
    Toll PW; Gaehtgens P; Neuhaus D; Pieschl RL; Fedde MR
    Am J Vet Res; 1995 Feb; 56(2):227-32. PubMed ID: 7717591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Qualification of the Stewart variables for the assessment of the acid-base status in healthy dogs and dogs with different diseases].
    Siegling-Vlitakis C; Kohn B; Kellermeier C; Schmitz R; Hartmann H
    Berl Munch Tierarztl Wochenschr; 2007; 120(3-4):148-55. PubMed ID: 17416138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrolyte shifts across the artificial lung in patients on extracorporeal membrane oxygenation: interdependence between partial pressure of carbon dioxide and strong ion difference.
    Langer T; Scotti E; Carlesso E; Protti A; Zani L; Chierichetti M; Caironi P; Gattinoni L
    J Crit Care; 2015 Feb; 30(1):2-6. PubMed ID: 25307980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo regulation of plasma [H+] in ponies during acute changes in PCO2.
    Forster HV; Murphy CL; Brice AG; Pan LG; Lowry TF
    J Appl Physiol (1985); 1990 Jan; 68(1):316-21. PubMed ID: 2107166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of CO2, O2, and acid in arteriovenous [H+] difference during muscle contractions.
    Stainsby WN; Eitzman PD
    J Appl Physiol (1985); 1988 Oct; 65(4):1803-10. PubMed ID: 2846498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of the strong ion gap versus the anion gap over extremes of PCO2 and pH.
    Morgan TJ; Cowley DM; Weier SL; Venkatesh B
    Anaesth Intensive Care; 2007 Jun; 35(3):370-3. PubMed ID: 17591130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.