These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 1491019)

  • 1. A finite element model for evaluation of tibial prosthesis-bone interface in total knee replacement.
    Rakotomanana RL; Leyvraz PF; Curnier A; Heegaard JH; Rubin PJ
    J Biomech; 1992 Dec; 25(12):1413-24. PubMed ID: 1491019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frictional interface micromotions and anisotropic stress distribution in a femoral total hip component.
    Rubin PJ; Rakotomanana RL; Leyvraz PF; Zysset PK; Curnier A; Heegaard JH
    J Biomech; 1993 Jun; 26(6):725-39. PubMed ID: 8514816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-polyethylene tibial components generate higher stress and micromotions than metal-backed tibial components in total knee arthroplasty.
    Brihault J; Navacchia A; Pianigiani S; Labey L; De Corte R; Pascale V; Innocenti B
    Knee Surg Sports Traumatol Arthrosc; 2016 Aug; 24(8):2550-9. PubMed ID: 25957612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation and sensitivity of model-predicted proximal tibial displacement and tray micromotion in cementless total knee arthroplasty under physiological loading conditions.
    Yang H; Bayoglu R; Renani MS; Behnam Y; Navacchia A; Clary C; Rullkoetter PJ
    J Mech Behav Biomed Mater; 2020 Sep; 109():103793. PubMed ID: 32347217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of bone-prosthesis interface micromotion for cementless tibial prosthesis fixation and the influence of loading conditions.
    Chong DY; Hansen UN; Amis AA
    J Biomech; 2010 Apr; 43(6):1074-80. PubMed ID: 20189576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Load transfer in the proximal tibia following implantation with a unicompartmental knee replacement: a static snapshot.
    Simpson DJ; Kendrick BJ; Dodd CA; Price AJ; Gill HS; Murray DW
    Proc Inst Mech Eng H; 2011 May; 225(5):521-9. PubMed ID: 21755781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consequences of an interference fit on the fixation of porous-coated tibial components in total knee replacement.
    Dawson JM; Bartel DL
    J Bone Joint Surg Am; 1992 Feb; 74(2):233-8. PubMed ID: 1541617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the effect of tray malalignment on risk for bone damage and implant subsidence after total knee arthroplasty.
    Wong J; Steklov N; Patil S; Flores-Hernandez C; Kester M; Colwell CW; D'Lima DD
    J Orthop Res; 2011 Mar; 29(3):347-53. PubMed ID: 20882595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of three variables on the stresses in a three-dimensional model of a proximal tibia-total knee implant construct.
    Sarathi Kopparti P; Lewis G
    Biomed Mater Eng; 2007; 17(1):19-28. PubMed ID: 17264384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of the tibial component in total knee replacement.
    Bartel DL; Burstein AH; Santavicca EA; Insall JN
    J Bone Joint Surg Am; 1982 Sep; 64(7):1026-33. PubMed ID: 7118966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element analysis: a comparison of an all-polyethylene tibial implant and its metal-backed equivalent.
    Thompson SM; Yohuno D; Bradley WN; Crocombe AD
    Knee Surg Sports Traumatol Arthrosc; 2016 Aug; 24(8):2560-6. PubMed ID: 26694487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The possibilities of uncemented glenoid component--a finite element study.
    Gupta S; van der Helm FC; van Keulen F
    Clin Biomech (Bristol, Avon); 2004 Mar; 19(3):292-302. PubMed ID: 15003345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new model to assess tibial fixation. II. Concurrent histologic and biomechanical observations.
    Stulberg BN; Watson JT; Stulberg SD; Bauer TW; Manley MT
    Clin Orthop Relat Res; 1991 Feb; (263):303-9. PubMed ID: 1993387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computationally efficient prediction of bone-implant interface micromotion of a cementless tibial tray during gait.
    Fitzpatrick CK; Hemelaar P; Taylor M
    J Biomech; 2014 May; 47(7):1718-26. PubMed ID: 24642351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical comparison between metal block and cement-screw techniques for the treatment of tibial bone defects in total knee arthroplasty based on finite element analysis.
    Liu Y; Zhang A; Wang C; Yin W; Wu N; Chen H; Chen B; Han Q; Wang J
    Comput Biol Med; 2020 Oct; 125():104006. PubMed ID: 32971324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface pretreatment for prolonged survival of cemented tibial prosthesis components: full- vs. surface-cementation technique.
    Marx R; Qunaibi M; Wirtz DC; Niethard FU; Mumme T
    Biomed Eng Online; 2005 Oct; 4():61. PubMed ID: 16262888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress analysis of a condylar knee tibial component: influence of metaphyseal shell properties and cement injection depth.
    Cheal EJ; Hayes WC; Lee CH; Snyder BD; Miller J
    J Orthop Res; 1985; 3(4):424-34. PubMed ID: 4067701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of the interface on the bone stresses beneath tibial components.
    Garg A; Walker PS
    J Biomech; 1986; 19(12):957-67. PubMed ID: 3818674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical bond strength of the cement-tibial component interface in total knee arthroplasty.
    Pittman GT; Peters CL; Hines JL; Bachus KN
    J Arthroplasty; 2006 Sep; 21(6):883-8. PubMed ID: 16950044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling debonded stem-cement interface for hip implants: effect of residual stresses.
    Nuño N; Amabili M
    Clin Biomech (Bristol, Avon); 2002 Jan; 17(1):41-8. PubMed ID: 11779645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.