These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 149113)

  • 1. Biochemical and genetic study of D-glucitol transport and catabolism in Bacillus subtilis.
    Chalumeau H; Delobbe A; Gay P
    J Bacteriol; 1978 Jun; 134(3):920-8. PubMed ID: 149113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosomal localization of gut, fruC, and pfk mutations affecting genes involved in Bacillus subtilis D-glucitol catabolism.
    Gay P; Chalumeau H; Steinmetz M
    J Bacteriol; 1983 Mar; 153(3):1133-7. PubMed ID: 6402486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Existence of two alternative pathways for fructose and sorbitol metabolism in Bacillus subtilis Marburg.
    Delobbe A; Chalumeau H; Gay P
    Eur J Biochem; 1975 Feb; 51(2):503-10. PubMed ID: 168069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mannitol-1-phosphate dehydrogenase (MtlD) is required for mannitol and glucitol assimilation in Bacillus subtilis: possible cooperation of mtl and gut operons.
    Watanabe S; Hamano M; Kakeshita H; Bunai K; Tojo S; Yamaguchi H; Fujita Y; Wong SL; Yamane K
    J Bacteriol; 2003 Aug; 185(16):4816-24. PubMed ID: 12897001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis.
    Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M
    J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucitol induction in Bacillus subtilis is mediated by a regulatory factor, GutR.
    Ye R; Rehemtulla SN; Wong SL
    J Bacteriol; 1994 Jun; 176(11):3321-7. PubMed ID: 8195087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fructose transport in Bacillus subtilis.
    Gay P; Delobbe A
    Eur J Biochem; 1977 Oct; 79(2):363-73. PubMed ID: 200418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of glucitol in the GutR-mediated transcription activation process in Bacillus subtilis: glucitol induces GutR to change its conformation and to bind ATP.
    Poon KK; Chu JC; Wong SL
    J Biol Chem; 2001 Aug; 276(32):29819-25. PubMed ID: 11390381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations affecting transport of the hexitols D-mannitol, D-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping.
    Lengeler J
    J Bacteriol; 1975 Oct; 124(1):26-38. PubMed ID: 1100602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of glucitol in the GutR-mediated transcription activation process in Bacillus subtilis: tight binding of GutR to tis binding site.
    Poon KK; Chen CL; Wong SL
    J Biol Chem; 2001 Mar; 276(13):9620-5. PubMed ID: 11118449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic evidence for glucitol-specific enzyme III, an essential phosphocarrier protein of the Salmonella typhimurium glucitol phosphotransferase system.
    Sarno MV; Tenn LG; Desai A; Chin AM; Grenier FC; Saier MH
    J Bacteriol; 1984 Mar; 157(3):953-5. PubMed ID: 6365895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymes related to fructose utilization in Pseudomonas cepacia.
    Allenza P; Lee YN; Lessie TG
    J Bacteriol; 1982 Jun; 150(3):1348-56. PubMed ID: 6281243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of NAD-dependent polyol dehydrogenases for enzymatic mannitol/sorbitol production with coenzyme regeneration.
    Parmentier S; Arnaut F; Soetaert W; Vandamme EJ
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):255-62. PubMed ID: 15296174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of intracellular fructose in Bacillus subtilis mediated by phosphoenolpyruvate-1-fructose phosphotransferase.
    Delobbe A; Chalumeau H; Claverie JM; Gay P
    Eur J Biochem; 1976 Jul; 66(3):485-91. PubMed ID: 821752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transport of mannitol in
    Kohlmeier MG; Oresnik IJ
    Microbiology (Reading); 2023 Jul; 169(7):. PubMed ID: 37505890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of catabolic pathway for 1-deoxy-D-sorbitol in Bacillus licheniformis.
    Li Y; Huang H; Zhang X
    Biochem Biophys Res Commun; 2022 Jan; 586():81-86. PubMed ID: 34837836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Isolation and genetic localization of mutants of fructose metabolic system in Bacillus subtilis].
    Carayon A; Gay P; Rapoport G
    C R Acad Hebd Seances Acad Sci D; 1970 Jul; 271(2):263-6. PubMed ID: 4247408
    [No Abstract]   [Full Text] [Related]  

  • 18. Characterization of genes involved in D-sorbitol oxidation in thermotolerant Gluconobacter frateurii.
    Soemphol W; Saichana N; Yakushi T; Adachi O; Matsushita K; Toyama H
    Biosci Biotechnol Biochem; 2012; 76(8):1497-505. PubMed ID: 22878210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence analysis of the groESL-cotA region of the Bacillus subtilis genome, containing the restriction/modification system genes.
    Kasahara Y; Nakai S; Ogasawara N; Yata K; Sadaie Y
    DNA Res; 1997 Oct; 4(5):335-9. PubMed ID: 9455482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mannitol and fructose catabolic pathways of Pseudomonas aeruginosa carbohydrate-negative mutants and pleiotropic effects of certain enzyme deficiencies.
    Phibbs PV; McCowen SM; Feary TW; Blevins WT
    J Bacteriol; 1978 Feb; 133(2):717-28. PubMed ID: 146701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.