These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 149117)

  • 1. Preparative study on the isolation of single sarcomeres from rabbit skeletal muscle.
    Kang CG; Muguruma M; Ito T; Fukazawa T
    J Biochem; 1978 Apr; 83(4):957-60. PubMed ID: 149117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of sarcolemmal vesicles from rabbit fast skeletal muscle.
    Seiler S; Fleischer S
    Methods Enzymol; 1988; 157():26-36. PubMed ID: 2976461
    [No Abstract]   [Full Text] [Related]  

  • 3. Isolation of transverse tubule membranes from skeletal muscle: ion transport activity, reformation of triad junctions, and isolation of junctional spanning protein of triads.
    Caswell AH; Brandt NR; Brunschwig JP; Kawamoto RM
    Methods Enzymol; 1988; 157():68-84. PubMed ID: 2976472
    [No Abstract]   [Full Text] [Related]  

  • 4. beta-actinin, a regulatory protein of muscle. Purification, characterization and function.
    Maruyama K; Kimura S; Ishi T; Kuroda M; Ohashi K
    J Biochem; 1977 Jan; 81(1):215-32. PubMed ID: 66229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The use of cryomethods for research on the sarcomere ultrastructure of rabbit skeletal muscles].
    Shpagina MD; Khutsian SS; Allakhverdov BL; Podlubnaia ZA
    Tsitologiia; 1990; 32(11):1073-7. PubMed ID: 2093241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of microsomal subfractions isolated from developing rabbit skeletal muscle.
    Zubrzycka E; Michalak M; Kosk-Kosicka D; Sarzała MG
    Eur J Biochem; 1979 Jan; 93(1):113-21. PubMed ID: 155522
    [No Abstract]   [Full Text] [Related]  

  • 7. Isolation of transverse tubules by fractionation of triad junctions of skeletal muscle.
    Lau YH; Caswell AH; Brunschwig JP
    J Biol Chem; 1977 Aug; 252(15):5565-74. PubMed ID: 142087
    [No Abstract]   [Full Text] [Related]  

  • 8. Half-sarcomere dynamics in myofibrils during activation and relaxation studied by tracking fluorescent markers.
    Telley IA; Denoth J; Stüssi E; Pfitzer G; Stehle R
    Biophys J; 2006 Jan; 90(2):514-30. PubMed ID: 16239326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments.
    Horowits R; Podolsky RJ
    J Cell Biol; 1987 Nov; 105(5):2217-23. PubMed ID: 3680378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of plasma membrane from smooth, skeletal, and heart muscle.
    Kidwai AM
    Methods Enzymol; 1974; 31():134-44. PubMed ID: 4278471
    [No Abstract]   [Full Text] [Related]  

  • 11. The presence of two skeletal muscle alpha-actinins correlates with troponin-tropomyosin expression and Z-line width.
    Schachat FH; Canine AC; Briggs MM; Reedy MC
    J Cell Biol; 1985 Sep; 101(3):1001-8. PubMed ID: 4030889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure of A segments from glycerinated skeletal muscle.
    Irish MJ; Wilson FJ
    Tissue Cell; 1979; 11(2):201-7. PubMed ID: 473156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic behavior of connectin filaments during thick filament movement in activated skeletal muscle.
    Horowits R; Maruyama K; Podolsky RJ
    J Cell Biol; 1989 Nov; 109(5):2169-76. PubMed ID: 2808523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological and functional characterization of the endosarcomeric elastic filament.
    Salviati G; Betto R; Ceoldo S; Pierobon-Bormioli S
    Am J Physiol; 1990 Jul; 259(1 Pt 1):C144-9. PubMed ID: 2164780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and localization from chicken gizzard of an inhibitory protein for Mg2+-activated skeletal muscle actomyosin ATPase.
    Makioka A; Hirabayashi T
    J Biochem; 1978 Oct; 84(4):947-55. PubMed ID: 152312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sarcomere overextension reduces stretch-induced tension loss in myofibrils of rabbit psoas.
    Panchangam A; Herzog W
    J Biomech; 2011 Jul; 44(11):2144-9. PubMed ID: 21679954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manifestation of the stripes of minor proteins location in A-bands of rabbit cardiac myofibrils.
    Podlubnaya ZA; Shpagina MD; Lednev VV
    J Mol Biol; 1989 Dec; 210(3):655-8. PubMed ID: 2614839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Neutral calcium dependent proteinase from rabbit skeletal muscle: activity on myofibrillar proteins].
    Azanza JL; Raymond J; Robin JM; Cottin P; Ducastaing A
    Biochimie; 1980; 62(7):481-6. PubMed ID: 6996745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myofibrillogenesis in living cells microinjected with fluorescently labeled alpha-actinin.
    Sanger JM; Mittal B; Pochapin MB; Sanger JW
    J Cell Biol; 1986 Jun; 102(6):2053-66. PubMed ID: 2423530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributionof Z-line constituents to the formation of the contraction bands of chicken myofibrils on addition of Mg2+-ATP.
    Muguruma M; Muguruma Y; Fukazawa T
    J Biochem; 1980 Jul; 88(1):145-9. PubMed ID: 7410330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.