These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 1491270)

  • 1. A long closed state of the synaptosomal bursting potassium channel confers a statistical memory.
    Rahamimoff R; Edry-Schiller J; Ginsburg S
    J Neurophysiol; 1992 Dec; 68(6):2260-3. PubMed ID: 1491270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation and inactivation of the bursting potassium channel from fused Torpedo synaptosomes.
    Edry-Schiller J; Rahamimoff R
    J Physiol; 1993 Nov; 471():659-78. PubMed ID: 8120828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A bursting potassium channel in isolated cholinergic synaptosomes of Torpedo electric organ.
    Edry-Schiller J; Ginsburg S; Rahamimoff R
    J Physiol; 1991 Aug; 439():627-47. PubMed ID: 1654418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage dependent switch in the activity mode of the K+ channel in presynaptic nerve terminals.
    Butkevich A; Ohana O; Meir A; Rahamimoff R
    Neuroreport; 1997 Jul; 8(11):2539-45. PubMed ID: 9261823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillations in the activity of a potassium channel at the presynaptic nerve terminal.
    Rahamimoff R; Edry-Schiller J; Rubin-Fraenkel M; Butkevich A; Ginsburg S
    J Neurophysiol; 1995 Jun; 73(6):2448-58. PubMed ID: 7666151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A voltage-dependent and calcium-permeable ion channel in fused presynaptic terminals of Torpedo.
    Meir A; Rahamimoff R
    J Neurophysiol; 1996 May; 75(5):1858-70. PubMed ID: 8734585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of high-conductance potassium channels in synaptosomal membranes from the rat brain to intracellular pH.
    Habartová A; Krůsek J; Zemková H
    Eur Biophys J; 1994; 23(1):71-7. PubMed ID: 8206007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling between charge movement and pore opening in voltage dependent potassium channels.
    Stefani E
    Medicina (B Aires); 1995; 55(5 Pt 2):591-9. PubMed ID: 8842189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple types of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membranes.
    Farley J; Rudy B
    Biophys J; 1988 Jun; 53(6):919-34. PubMed ID: 2456105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells.
    Chen Y; Sun XD; Herness S
    J Neurophysiol; 1996 Feb; 75(2):820-31. PubMed ID: 8714655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A calcium-activated potassium channel causes frequency-dependent action-potential failures in a mammalian nerve terminal.
    Bielefeldt K; Jackson MB
    J Neurophysiol; 1993 Jul; 70(1):284-98. PubMed ID: 8395581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of voltage-dependent potassium channels to the somatic shunt in neck motoneurons of the cat.
    Campbell DM; Rose PK
    J Neurophysiol; 1997 Mar; 77(3):1470-86. PubMed ID: 9084612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subthreshold membrane resonance in neocortical neurons.
    Hutcheon B; Miura RM; Puil E
    J Neurophysiol; 1996 Aug; 76(2):683-97. PubMed ID: 8871191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine modulates two potassium currents and inhibits the intrinsic firing properties of an identified motor neuron in a central pattern generator network.
    Kloppenburg P; Levini RM; Harris-Warrick RM
    J Neurophysiol; 1999 Jan; 81(1):29-38. PubMed ID: 9914264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of single K(ATP) channels in mammalian dentate gyrus granule cells.
    Pelletier MR; Pahapill PA; Pennefather PS; Carlen PL
    J Neurophysiol; 2000 Nov; 84(5):2291-301. PubMed ID: 11067973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potassium currents and membrane excitability of neurons in the rat's dorsal nucleus of the lateral lemniscus.
    Fu XW; Wu SH; Brezden BL; Kelly JB
    J Neurophysiol; 1996 Aug; 76(2):1121-32. PubMed ID: 8871225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patch-clamp study of postnatal development of CA1 neurons in rat hippocampal slices: membrane excitability and K+ currents.
    Spigelman I; Zhang L; Carlen PL
    J Neurophysiol; 1992 Jul; 68(1):55-69. PubMed ID: 1517828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State-dependent inactivation of the Kv3 potassium channel.
    Marom S; Levitan IB
    Biophys J; 1994 Aug; 67(2):579-89. PubMed ID: 7948675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2150-63. PubMed ID: 8350136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HERG-Like potassium current regulates the resting membrane potential in glomus cells of the rabbit carotid body.
    Overholt JL; Ficker E; Yang T; Shams H; Bright GR; Prabhakar NR
    J Neurophysiol; 2000 Mar; 83(3):1150-7. PubMed ID: 10712445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.