These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 1491348)

  • 1. On the assessment of the relative magnitude of rate constants in the linear open one-compartment model.
    Macheras P; Symillides M; Reppas C
    J Pharm Sci; 1992 Dec; 81(12):1231-3. PubMed ID: 1491348
    [No Abstract]   [Full Text] [Related]  

  • 2. Estimation of absorption rate constant in a one-compartment model with the profile of the bioavailable dose eliminated as a function of multiples of half-life.
    Macheras P; Symillides M; Reppas C
    J Pharm Sci; 1993 Dec; 82(12):1298-300. PubMed ID: 8308718
    [No Abstract]   [Full Text] [Related]  

  • 3. Fundamental pharmacokinetic limits on the utility of using a sinusoidal drug delivery system to enhance therapy.
    Burnette RR
    J Pharmacokinet Biopharm; 1992 Oct; 20(5):477-500. PubMed ID: 1287198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four compartment mammillary model applied to the pharmacokinetics of a spiroarsorane administered orally to rabbits.
    de Biasi J; Rekik L
    J Biomed Eng; 1991 Sep; 13(5):439-40. PubMed ID: 1795514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Compartment simulation models and physiologic use in pharmaco- and toxicokinetics].
    Kostrzewski P
    Med Pr; 1998; 49(1):83-92. PubMed ID: 9587914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple-dose pharmacokinetics of a long half-life drug: contributions of mathematical modeling.
    Nedelman JR; Gibiansky E; Cramer J; Kovarik J; Meligeni J; Robbins B
    Eur J Drug Metab Pharmacokinet; 1997; 22(2):179-84. PubMed ID: 9248788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of methods for estimating the rate constant of a one-compartment absorption model when absorption and elimination rate constants are equal.
    Hoke JF; Ravis WR
    J Pharm Sci; 1992 Apr; 81(4):401-2. PubMed ID: 1501081
    [No Abstract]   [Full Text] [Related]  

  • 8. Four open mammillary and catenary compartment models for pharmacokinetics studies.
    de Biasi J
    J Biomed Eng; 1989 Nov; 11(6):467-70. PubMed ID: 2811345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of direct search optimization for pharmacokinetic parameter estimation.
    Khorasheh F; Sattari S; Gerayeli A; Ahmadi AM
    J Pharm Pharm Sci; 1999; 2(3):92-8. PubMed ID: 10953255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of drug excretion rate from blood into the gut using a three-compartment closed model.
    Wu G
    Pharmacol Res; 1998 Feb; 37(2):157-63. PubMed ID: 9572072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological modelling of organic compounds.
    Andersen ME
    Ann Occup Hyg; 1991 Jun; 35(3):309-21. PubMed ID: 1888102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of glomerular filtration rate by means of the four-, and more compartmental closed models after a single intravenous injection.
    Wu G
    Arch Ital Urol Androl; 1998 Apr; 70(2):51-5. PubMed ID: 9616980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated approach to pharmacokinetic analysis for linear mammillary systems in which input and exit may occur in/from any compartment.
    Nakashima E; Benet LZ
    J Pharmacokinet Biopharm; 1989 Dec; 17(6):673-86. PubMed ID: 2635739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Handling of computational in vitro/in vivo correlation problems by Microsoft Excel: IV. Generalized matrix analysis of linear compartment systems.
    Langenbucher F
    Eur J Pharm Biopharm; 2005 Jan; 59(1):229-35. PubMed ID: 15567321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical models for calculating the blood level of a drug with oral controlled release forms.
    Vergnaud JM
    Medinfo; 1995; 8 Pt 2():1127-31. PubMed ID: 8591386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mathematical study of simple exponential modelling in biochemical processes.
    Mazumdar J; Banerjee M; Teng LY
    Australas Phys Eng Sci Med; 1991 Dec; 14(4):226-33. PubMed ID: 1789775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal sampling times in bioequivalence tests.
    Kong FH; Gonin R
    J Biopharm Stat; 2000 Feb; 10(1):31-44. PubMed ID: 10709799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial effects in modeling pharmacokinetics of rapid action drugs.
    Lafrance P; Lemaire V; Varin F; Donati F; BĂ©lair J; Nekka F
    Bull Math Biol; 2002 May; 64(3):483-500. PubMed ID: 12094406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two equally valid interpretations of the linear multicompartment mammillary pharmacokinetic model.
    Jacobs JR; Shafer SL; Larsen JL; Hawkins ED
    J Pharm Sci; 1990 Apr; 79(4):331-3. PubMed ID: 2352145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mathematical model of the kinetics and tissue distribution of 2-fluoro-beta-alanine, the major catabolite of 5-fluorouracil.
    Zhang R; Liu T; Soong SJ; Diasio RB
    Biochem Pharmacol; 1993 May; 45(10):2063-9. PubMed ID: 8512588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.