BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 1491581)

  • 1. A general method of determining the frequency-dependent propagation coefficient and characteristic impedance of an artery in the presence of reflections.
    Bertram CD; Greenwald SE
    J Biomech Eng; 1992 Feb; 114(1):2-9. PubMed ID: 1491581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of all possible combinations of four measurements determining true propagation in arteries.
    She J; Bertram CD; Gow BS
    J Biomed Eng; 1993 Sep; 15(5):379-86. PubMed ID: 8231154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of geometric taper on the derivation of the true propagation coefficient using a three point method.
    Reuderink P; Sipkema P; Westerhof N
    J Biomech; 1988; 21(2):141-53. PubMed ID: 3350828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evaluation of local wave speed in the presence of reflected waves.
    Borlotti A; Li Y; Parker KH; Khir AW
    J Biomech; 2014 Jan; 47(1):87-95. PubMed ID: 24252610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A noninvasive method to estimate arterial impedance by means of assessment of local diameter change and the local center-line blood flow velocity using ultrasound.
    Brands PJ; Hoeks AP; Rutten MC; Reneman RS
    Ultrasound Med Biol; 1996; 22(7):895-905. PubMed ID: 8923708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood flow velocity in the pial arteries of cats, with particular reference to the vessel diameter.
    Kobari M; Gotoh F; Fukuuchi Y; Tanaka K; Suzuki N; Uematsu D
    J Cereb Blood Flow Metab; 1984 Mar; 4(1):110-4. PubMed ID: 6693510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the effects of measurement errors on the evaluation of propagation coefficients, in rubber tubes and canine aorta in vivo.
    Bertram CD; She J
    Technol Health Care; 1995 Dec; 3(3):161-84. PubMed ID: 8749864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure peaking in pulsatile flow through arterial tree structures.
    Duan B; Zamir M
    Ann Biomed Eng; 1995; 23(6):794-803. PubMed ID: 8572429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The compression and expansion waves of the forward and backward flows: an in-vitro arterial model.
    Feng J; Khir AW
    Proc Inst Mech Eng H; 2008 May; 222(4):531-42. PubMed ID: 18595362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wave dissipation in flexible tubes in the time domain: in vitro model of arterial waves.
    Feng J; Long Q; Khir AW
    J Biomech; 2007; 40(10):2130-8. PubMed ID: 17166499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technical aspects of compliance assessment.
    Hoeks AP; Brands PJ; Reneman RS
    Arch Mal Coeur Vaiss; 1991 Sep; 84 Spec No 3():77-81. PubMed ID: 1835365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of length on the fundamental resonance frequency of arterial models having radial dilatation.
    Wang YY; Lia WC; Hsiu H; Jan MY; Wang WK
    IEEE Trans Biomed Eng; 2000 Mar; 47(3):313-8. PubMed ID: 10743772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship of pressure and flow to arterial diameter.
    Itzchak Y; Dorfman G; Glickman M; Pingoud E
    Invest Radiol; 1982; 17(3):265-70. PubMed ID: 7118515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of the reservoir and wave pressure and velocity from measurements at an arbitrary location in arteries.
    Aguado-Sierra J; Alastruey J; Wang JJ; Hadjiloizou N; Davies J; Parker KH
    Proc Inst Mech Eng H; 2008 May; 222(4):403-16. PubMed ID: 18595353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of different methods for the determination of the true wave propagation coefficient, in rubber tubes and the canine thoracic aorta.
    Bertram CD; Gow BS; Greenwald SE
    Med Eng Phys; 1997 Apr; 19(3):212-22. PubMed ID: 9239640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulsatile flow in a constricted channel.
    Tutty OR
    J Biomech Eng; 1992 Feb; 114(1):50-4. PubMed ID: 1491586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resolving the time lag between pressure and flow for the determination of local wave speed in elastic tubes and arteries.
    Swalen MJP; Khir AW
    J Biomech; 2009 Jul; 42(10):1574-1577. PubMed ID: 19426982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsating blood flow in an initially stressed, anisotropic elastic tube: linear approximation of pressure waves.
    Tsangaris S; Drikakis D
    Med Biol Eng Comput; 1989 Jan; 27(1):82-8. PubMed ID: 2779302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exponential taper in arteries: an exact solution of its effect on blood flow velocity waveforms and impedance.
    Myers LJ; Capper WL
    Med Eng Phys; 2004 Mar; 26(2):147-55. PubMed ID: 15036182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-invasive vascular impedance measures demonstrate ocular vasoconstriction during isometric exercise.
    Morgan AJ; Hosking SL
    Br J Ophthalmol; 2007 Mar; 91(3):385-90. PubMed ID: 17050584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.