These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 1491585)
21. Computational study of the effect of geometric and flow parameters on the steady flow field at the rabbit aorto-celiac bifurcation. Cheer AY; Dwyer HA; Barakat AI; Sy E; Bice M Biorheology; 1998; 35(6):415-35. PubMed ID: 10656050 [TBL] [Abstract][Full Text] [Related]
22. The horseshoe vortex: a secondary flow generated in arteries with stenosis, bifurcation, and branchings. Fukushima T; Azuma T Biorheology; 1982; 19(1/2):143-54. PubMed ID: 7093448 [TBL] [Abstract][Full Text] [Related]
23. Experimental evaluation of streamline patterns and separated flows in a series of branching vessels with implications for atherosclerosis and thrombosis. el-Masry OA; Feuerstein IA; Round GF Circ Res; 1978 Oct; 43(4):608-18. PubMed ID: 688561 [TBL] [Abstract][Full Text] [Related]
24. Numerical flow studies in human carotid artery bifurcations: basic discussion of the geometric factor in atherogenesis. Perktold K; Resch M J Biomed Eng; 1990 Mar; 12(2):111-23. PubMed ID: 2319760 [TBL] [Abstract][Full Text] [Related]
26. Development of a general method for designing microvascular networks using distribution of wall shear stress. Sayed Razavi M; Shirani E J Biomech; 2013 Sep; 46(13):2303-9. PubMed ID: 23891174 [TBL] [Abstract][Full Text] [Related]
27. Computation of vascular flow dynamics from intravascular ultrasound images. Chandran KB; Vonesh MJ; Roy A; Greenfield S; Kane B; Greene R; McPherson DD Med Eng Phys; 1996 Jun; 18(4):295-304. PubMed ID: 8782188 [TBL] [Abstract][Full Text] [Related]
28. Wall shear rate distribution in an abdominal aortic bifurcation model: effects of vessel compliance and phase angle between pressure and flow waveforms. Lee CS; Tarbell JM J Biomech Eng; 1997 Aug; 119(3):333-42. PubMed ID: 9285347 [TBL] [Abstract][Full Text] [Related]
29. Pulsatile flow in a constricted channel. Tutty OR J Biomech Eng; 1992 Feb; 114(1):50-4. PubMed ID: 1491586 [TBL] [Abstract][Full Text] [Related]
30. Flow patterns and preferred sites of atherosclerotic lesions in the human aorta - II. Abdominal aorta. Endo S; Goldsmith HL; Karino T Biorheology; 2014; 51(4-5):257-74. PubMed ID: 25281597 [TBL] [Abstract][Full Text] [Related]
31. A computational fluid mechanical study of blood flow in a variety of asymmetric arterial bifurcations. Yamaguchi T Front Med Biol Eng; 1993; 5(2):135-41. PubMed ID: 8241030 [TBL] [Abstract][Full Text] [Related]
32. Three-dimensional simulation of blood flow in an abdominal aortic aneurysm--steady and unsteady flow cases. Taylor TW; Yamaguchi T J Biomech Eng; 1994 Feb; 116(1):89-97. PubMed ID: 8189719 [TBL] [Abstract][Full Text] [Related]
33. A computer simulation of the non-Newtonian blood flow at the aortic bifurcation. Lou Z; Yang WJ J Biomech; 1993 Jan; 26(1):37-49. PubMed ID: 8423167 [TBL] [Abstract][Full Text] [Related]
34. Pulsatile velocity measurements in a model of the human abdominal aorta under simulated exercise and postprandial conditions. Moore JE; Ku DN J Biomech Eng; 1994 Feb; 116(1):107-11. PubMed ID: 8189705 [TBL] [Abstract][Full Text] [Related]
35. Numerical simulations of steady flow inside a three dimensional aortic bifurcation model. Wille SO J Biomed Eng; 1984 Jan; 6(1):49-55. PubMed ID: 6694368 [TBL] [Abstract][Full Text] [Related]
36. Vortex generation in pulsatile flow through arterial bifurcation models including the human carotid artery. Fukushima T; Homma T; Harakawa K; Sakata N; Azuma T J Biomech Eng; 1988 Aug; 110(3):166-71. PubMed ID: 3172734 [TBL] [Abstract][Full Text] [Related]