These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 1491587)

  • 21. Numerical schemes for unsteady fluid flow through collapsible tubes.
    Elad D; Katz D; Kimmel E; Einav S
    J Biomed Eng; 1991 Jan; 13(1):10-8. PubMed ID: 2002666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical simulation of collapsible-tube flows with sinusoidal forced oscillations.
    She J; Bertram CD
    Bull Math Biol; 1996 Nov; 58(6):1023-46. PubMed ID: 8953255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-excited oscillations in thin-walled collapsible tubes.
    Barclay WH; Thalayasingam S
    Med Biol Eng Comput; 1986 Sep; 24(5):482-7. PubMed ID: 3821205
    [No Abstract]   [Full Text] [Related]  

  • 24. Numerical analysis of flow in an elastic artery model.
    Dutta A; Wang DM; Tarbell JM
    J Biomech Eng; 1992 Feb; 114(1):26-33. PubMed ID: 1491583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flow in a two-dimensional collapsible channel with rigid inlet and outlet.
    Matsuzaki Y; Matsumoto T
    J Biomech Eng; 1989 Aug; 111(3):180-4. PubMed ID: 2779181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonlinear dynamics of microvascular blood flow.
    Carr RT; Lacoin M
    Ann Biomed Eng; 2000 Jun; 28(6):641-52. PubMed ID: 10983710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interactions of pulsatile upstream forcing with flow-induced oscillations of a collapsed tube: mode-locking.
    Bertram CD; Sheppeard MD
    Med Eng Phys; 2000 Jan; 22(1):29-37. PubMed ID: 10817946
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laser-Doppler measurements of velocities just downstream of a collapsible tube during flow-induced oscillations.
    Bertram CD; Diaz de Tuesta G; Nugent AH
    J Biomech Eng; 2001 Oct; 123(5):493-9. PubMed ID: 11601735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluid-structure interaction in a pulmonary arterial bifurcation.
    Yang XL; Liu Y; Yang JM
    J Biomech; 2007; 40(12):2694-9. PubMed ID: 17336989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A multiscale approach for modelling wave propagation in an arterial segment.
    Pontrelli G
    Comput Methods Biomech Biomed Engin; 2004 Apr; 7(2):79-89. PubMed ID: 15203956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physical principles governing the interrelationships of pressure, flow and volume in collapsible tubes.
    Chiles C; Ravin CE
    Invest Radiol; 1981; 16(6):525-7. PubMed ID: 7319761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental and numerical analysis of carotid artery blood flow.
    van Steenhoven AA; van de Vosse FN; Rindt CC; Janssen JD; Reneman RS
    Monogr Atheroscler; 1990; 15():250-60. PubMed ID: 2136928
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Choice of boundary condition for lattice-Boltzmann simulation of moderate-Reynolds-number flow in complex domains.
    Nash RW; Carver HB; Bernabeu MO; Hetherington J; Groen D; Krüger T; Coveney PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023303. PubMed ID: 25353601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical analysis of complex oscillations in multibranched microvascular networks.
    Ursino M; Cavalcanti S; Bertuglia S; Colantuoni A
    Microvasc Res; 1996 Mar; 51(2):229-49. PubMed ID: 8778577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A computer simulation of the blood flow at the aortic bifurcation with flexible walls.
    Lou Z; Yang WJ
    J Biomech Eng; 1993 Aug; 115(3):306-15. PubMed ID: 8231147
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurements of wave speed and compliance in a collapsible tube during self-excited oscillations: a test of the choking hypothesis.
    Bertram CD; Raymond CJ
    Med Biol Eng Comput; 1991 Sep; 29(5):493-500. PubMed ID: 1817211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new model of the vocal cords based on a collapsible tube analogy.
    Conrad WA
    Med Res Eng; 1980; 13(2):7-10. PubMed ID: 7401986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A mathematical model of unsteady collapsible tube behaviour.
    Bertram CD; Pedley TJ
    J Biomech; 1982; 15(1):39-50. PubMed ID: 7061526
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chaotic dynamics of red blood cells in a sinusoidal flow.
    Dupire J; Abkarian M; Viallat A
    Phys Rev Lett; 2010 Apr; 104(16):168101. PubMed ID: 20482082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.