These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 1491801)

  • 21. Spike-dependent intrinsic plasticity increases firing probability in rat striatal neurons in vivo.
    Mahon S; Casassus G; Mulle C; Charpier S
    J Physiol; 2003 Aug; 550(Pt 3):947-59. PubMed ID: 12844508
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hypoxia-induced functional alterations in adult rat neocortex.
    Luhmann HJ; Heinemann U
    J Neurophysiol; 1992 Apr; 67(4):798-811. PubMed ID: 1316953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 5-Hydroxytryptamine increases excitability of CA1 hippocampal pyramidal cells.
    Beck SG
    Synapse; 1992 Apr; 10(4):334-40. PubMed ID: 1585262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential effects of aging on NADPH-diaphorase and VIP neurons in cerebral cortex of rats.
    Huh Y; Kim C; Cho J; Lee W; Kim J; Ahn H
    Neuroreport; 1997 Sep; 8(13):2991-4. PubMed ID: 9376544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vasoactive intestinal polypeptide (VIP) inhibits potassium-induced release of cholecystokinin (CCK) from rat caudato-putamen but not from cerebral cortex.
    Allard LR; Beinfeld MC
    Neuropeptides; 1986 Oct; 8(3):287-93. PubMed ID: 3785588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Galanin blocks the slow cholinergic EPSP in CA1 pyramidal neurons from ventral hippocampus.
    Dutar P; Lamour Y; Nicoll RA
    Eur J Pharmacol; 1989 May; 164(2):355-60. PubMed ID: 2474449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vasoactive intestinal polypeptide acts synergistically with norepinephrine to depress spontaneous discharge rate in cerebral cortical neurons.
    Ferron A; Siggins GR; Bloom FE
    Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8810-2. PubMed ID: 3866254
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of vasoactive intestinal peptide/pituitary adenylate cyclase-activating polypeptide receptors in chick cerebral cortex.
    Zawilska JB; Niewiadomski P; Nowak JZ
    J Mol Neurosci; 2003 Apr; 20(2):153-62. PubMed ID: 12794309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrical and mechanical effects of vasoactive intestinal peptide and pituitary adenylate cyclase-activating peptide in the rat colon involve different mechanisms.
    Plujà L; Fernández E; Jiménez M
    Eur J Pharmacol; 2000 Feb; 389(2-3):217-24. PubMed ID: 10688987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of low concentrations of 4-aminopyridine on CA1 pyramidal cells of the hippocampus.
    Perreault P; Avoli M
    J Neurophysiol; 1989 May; 61(5):953-70. PubMed ID: 2566657
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pre- and postsynaptic GABAB receptors of rat neocortical neurons differ in their pharmacological properties.
    Deisz RA; Billard JM; Zieglgänsberger W
    Neurosci Lett; 1993 May; 154(1-2):209-12. PubMed ID: 8395667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrastructural evidence for combined action of noradrenaline and vasoactive intestinal polypeptide upon neurons, astrocytes, and blood vessels of the rat cerebral cortex.
    Paspalas CD; Papadopoulos GC
    Brain Res Bull; 1998; 45(3):247-59. PubMed ID: 9510417
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maxadilan specifically interacts with PAC1 receptor, which is a dominant form of PACAP/VIP family receptors in cultured rat cortical neurons.
    Tatsuno I; Uchida D; Tanaka T; Saeki N; Hirai A; Saito Y; Moro O; Tajima M
    Brain Res; 2001 Jan; 889(1-2):138-48. PubMed ID: 11166697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acamprosate (calciumacetylhomotaurinate) decreases postsynaptic potentials in the rat neocortex: possible involvement of excitatory amino acid receptors.
    Zeise ML; Kasparov S; Capogna M; Zieglgänsberger W
    Eur J Pharmacol; 1993 Jan; 231(1):47-52. PubMed ID: 8444281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Co-localization of vasoactive intestinal polypeptide, gamma-aminobutyric acid and choline acetyltransferase in neocortical interneurons of the adult rat.
    Bayraktar T; Staiger JF; Acsady L; Cozzari C; Freund TF; Zilles K
    Brain Res; 1997 May; 757(2):209-17. PubMed ID: 9200749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vasoactive intestinal peptide selectively depolarizes thalamic relay neurons and attenuates intrathalamic rhythmic activity.
    Lee SH; Cox CL
    J Neurophysiol; 2003 Aug; 90(2):1224-34. PubMed ID: 12711712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repetitive stimulation induced potentiation of excitatory transmission in the rat dorsal horn: an in vitro study.
    Jeftinija S; Urban L
    J Neurophysiol; 1994 Jan; 71(1):216-28. PubMed ID: 7908954
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Depolarization-dependent actions of dihydropyridines on synaptic transmission in the in vitro rat hippocampus.
    O'Regan MH; Kocsis JD; Waxman SG
    Brain Res; 1990 Sep; 527(2):181-91. PubMed ID: 1701335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vasoactive intestinal polypeptide depolarizations in cat bladder parasympathetic ganglia.
    Akasu T; Gallagher JP; Hirai K; Shinnick-Gallagher P
    J Physiol; 1986 May; 374():457-73. PubMed ID: 3746700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of trifluoperazine on synaptically evoked potentials and membrane properties of CA1 pyramidal neurons of rat hippocampus in situ and in vitro.
    Agopyan N; Krnjević K
    Synapse; 1993 Jan; 13(1):10-9. PubMed ID: 7678946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.