These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 149198)

  • 1. The effect of chlorhexidine and cetylpyridine on the binding of amaranth to saliva-coated hydroxyapatite.
    Jensen JE; Tustian DG
    J Periodontal Res; 1978 May; 13(3):275-9. PubMed ID: 149198
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparison of the in vivo and in vitro antibacterial properties of antiseptic mouthrinses containing chlorhexidine, alexidine, cetyl pyridinium chloride and hexetidine. Relevance to mode of action.
    Roberts WR; Addy M
    J Clin Periodontol; 1981 Aug; 8(4):295-310. PubMed ID: 6947993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparision between chlorhexidine and some quaternary ammonium compounds with regard to retention, salivary concentration and plaque-inhibiting effect in the human mouth after mouth rinses.
    Bonesvoll P; Gjermo P
    Arch Oral Biol; 1978; 23(4):289-94. PubMed ID: 278566
    [No Abstract]   [Full Text] [Related]  

  • 4. Comparative studies of two preparations containing chlorhexidine and cetylpyridinium chloride.
    Løberg RM; Hegna IK
    Pharm Acta Helv; 1979; 54(7-8):244-9. PubMed ID: 515110
    [No Abstract]   [Full Text] [Related]  

  • 5. Binding of dyes to chlorhexidine-treated hydroxyapatite.
    Jensen JE
    Scand J Dent Res; 1977 Jul; 85(5):334-40. PubMed ID: 268673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on interactions of amaranth with copper.
    Sinha RK; Sarkar S
    Indian J Biochem Biophys; 1979 Oct; 16(5):328-30. PubMed ID: 540941
    [No Abstract]   [Full Text] [Related]  

  • 7. Binding of dyes to hydroxyapatite treated with cetylpyridinium chloride or cetrimonium bromide.
    Jensen JE
    Scand J Dent Res; 1978 Mar; 86(2):87-92. PubMed ID: 274805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake distribution and metabolism of [14C]amaranth in the female rat.
    Ruddick JA; Craig J; Stavric B; Willes RF; Collins B
    Food Cosmet Toxicol; 1979 Oct; 17(5):435-42. PubMed ID: 520977
    [No Abstract]   [Full Text] [Related]  

  • 9. In vitro studies on the use of cetylpyridinium chloride as a bacterial plaque control agent.
    Holbeche JD; Reade PC
    Aust Dent J; 1978 Aug; 23(4):328-31. PubMed ID: 282838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biopharmaceutical study of the hepato-biliary transport of drugs. III. Binding characteristics of bromphenol blue and amaranth to the liver cytoplasmic Y and Z binding proteins in vitro.
    Takuda K; Narumiya O; Muranishi S
    Chem Pharm Bull (Tokyo); 1975 Apr; 23(4):729-35. PubMed ID: 241493
    [No Abstract]   [Full Text] [Related]  

  • 11. Investigations concerning the action of serveral chemical and biological agents on HBsAg.
    Morfei A; Burducea O; Neuman R; Cajal N; Copelovici Y; Crişan I
    Virologie; 1980; 31(4):273-8. PubMed ID: 7257176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacokinetics in hepatic transport of amaranth in rats intoxicated with carbon tetrachloride and alpha-naphthylisothiocyanate.
    Takahashi K; Wada T; Higashi Y; Yata N
    Chem Pharm Bull (Tokyo); 1985 Nov; 33(11):4973-80. PubMed ID: 3830424
    [No Abstract]   [Full Text] [Related]  

  • 13. The affinity of chlorhexidine for hydroxyapatite and salivary mucins.
    Rölla G; Löe H; Schiott CR
    J Periodontal Res; 1970; 5(2):90-5. PubMed ID: 4254174
    [No Abstract]   [Full Text] [Related]  

  • 14. Evaluating role of immobilized periphyton in bioremediation of azo dye amaranth.
    Shabbir S; Faheem M; Ali N; Kerr PG; Wu Y
    Bioresour Technol; 2017 Feb; 225():395-401. PubMed ID: 27956332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two sites of azo reduction in the monooxygenase system.
    Peterson FJ; Holtzman JL; Crankshaw D; Mason RP
    Mol Pharmacol; 1988 Oct; 34(4):597-603. PubMed ID: 2845254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of sulphonated water-soluble azo dyes by micro-organisms from human faeces.
    Watabe T; Ozawa N; Kobayashi F; Kurata H
    Food Cosmet Toxicol; 1980 Aug; 18(4):349-52. PubMed ID: 7461513
    [No Abstract]   [Full Text] [Related]  

  • 17. Adsorption of Streptococcus mutans on chemically treated hydroxyapatite.
    O'Brien WJ; Fan PL; Loesche WJ; Walker MC; Apostolids A
    J Dent Res; 1978; 57(9-10):910-4. PubMed ID: 281367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of human saliva and various compounds on the adsorption of the bacterium Streptococcus mutans to hydroxyapatite.
    Simonson LG; Reiher DA
    Arch Oral Biol; 1981; 26(2):143-6. PubMed ID: 6944026
    [No Abstract]   [Full Text] [Related]  

  • 19. Chlorhexidine uptake by saliva-coated and uncoated hydroxyapatite and salivary sediment.
    Park KK; Katz S; Stookey GK
    J Oral Med; 1984; 39(3):126-30. PubMed ID: 6090620
    [No Abstract]   [Full Text] [Related]  

  • 20. The fate of FD&C Red No. 2 and its metabolite, naphthionic acid, after different routes of administration in the rat.
    Pritchard AB; Holmes PA; Kirschman JC
    Toxicol Appl Pharmacol; 1976 Jan; 35(1):1-10. PubMed ID: 1258047
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.