BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 1492131)

  • 1. Interaction of rhodopsin, G-protein and kinase in octopus photoreceptors.
    Tsuda M; Hirata H; Tsuda T
    Photochem Photobiol; 1992 Dec; 56(6):1167-72. PubMed ID: 1492131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic nucleotides and GTP analogues stimulate light-induced phosphorylation of octopus rhodopsin.
    Tsuda M; Tsuda T; Hirata H
    FEBS Lett; 1989 Oct; 257(1):38-40. PubMed ID: 2553493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin.
    Kühn H; Hall SW; Wilden U
    FEBS Lett; 1984 Oct; 176(2):473-8. PubMed ID: 6436059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a single phosphorylation site within octopus rhodopsin.
    Ohguro H; Yoshida N; Shindou H; Crabb JW; Palczewski K; Tsuda M
    Photochem Photobiol; 1998 Dec; 68(6):824-8. PubMed ID: 9867032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel rhodopsin kinase in octopus photoreceptor possesses a pleckstrin homology domain and is activated by G protein betagamma-subunits.
    Kikkawa S; Yoshida N; Nakagawa M; Iwasa T; Tsuda M
    J Biol Chem; 1998 Mar; 273(13):7441-7. PubMed ID: 9516442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel photointermediate of octopus rhodopsin activates its G-protein.
    Nakagawa M; Kikkawa S; Tominaga K; Tsugi N; Tsuda M
    FEBS Lett; 1998 Oct; 436(2):259-62. PubMed ID: 9781691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhodopsin mutants discriminate sites important for the activation of rhodopsin kinase and Gt.
    Shi W; Osawa S; Dickerson CD; Weiss ER
    J Biol Chem; 1995 Feb; 270(5):2112-9. PubMed ID: 7836439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionally discrete mimics of light-activated rhodopsin identified through expression of soluble cytoplasmic domains.
    Abdulaev NG; Ngo T; Chen R; Lu Z; Ridge KD
    J Biol Chem; 2000 Dec; 275(50):39354-63. PubMed ID: 10988291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple purification and functional reconstitution of octopus photoreceptor Gq, which couples rhodopsin to phospholipase C.
    Kikkawa S; Tominaga K; Nakagawa M; Iwasa T; Tsuda M
    Biochemistry; 1996 Dec; 35(49):15857-64. PubMed ID: 8961950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of rhodopsin phosphorylation.
    Zhao X; Palczewski K; Ohguro H
    Biophys Chem; 1995; 56(1-2):183-8. PubMed ID: 7662865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deactivation of photoactivated rhodopsin by rhodopsin-kinase and arrestin.
    Kühn H; Wilden U
    J Recept Res; 1987; 7(1-4):283-98. PubMed ID: 3040978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic studies on rhodopsin kinase. Light-dependent phosphorylation of C-terminal peptides of rhodopsin.
    Brown NG; Fowles C; Sharma R; Akhtar M
    Eur J Biochem; 1993 Mar; 212(3):840. PubMed ID: 8462555
    [No Abstract]   [Full Text] [Related]  

  • 13. Structure and function in rhodopsin: peptide sequences in the cytoplasmic loops of rhodopsin are intimately involved in interaction with rhodopsin kinase.
    Thurmond RL; Creuzenet C; Reeves PJ; Khorana HG
    Proc Natl Acad Sci U S A; 1997 Mar; 94(5):1715-20. PubMed ID: 9050844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of GTP-binding protein Gq with photoactivated rhodopsin in the photoreceptor membranes of crayfish.
    Terakita A; Hariyama T; Tsukahara Y; Katsukura Y; Tashiro H
    FEBS Lett; 1993 Sep; 330(2):197-200. PubMed ID: 8365491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. O-Glycosylation of G-protein-coupled receptor, octopus rhodopsin. Direct analysis by FAB mass spectrometry.
    Nakagawa M; Miyamoto T; Kusakabe R; Takasaki S; Takao T; Shichida Y; Tsuda M
    FEBS Lett; 2001 May; 496(1):19-24. PubMed ID: 11343699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate recognition determinants for rhodopsin kinase: studies with synthetic peptides, polyanions, and polycations.
    Palczewski K; Arendt A; McDowell JH; Hargrave PA
    Biochemistry; 1989 Oct; 28(22):8764-70. PubMed ID: 2605220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An arrestin homolog of blowfly photoreceptors stimulates visual-pigment phosphorylation by activating a membrane-associated protein kinase.
    Bentrop J; Plangger A; Paulsen R
    Eur J Biochem; 1993 Aug; 216(1):67-73. PubMed ID: 8365418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic studies on rhodopsin kinase. Light-dependent phosphorylation of C-terminal peptides of rhodopsin.
    Brown NG; Fowles C; Sharma R; Akhtar M
    Eur J Biochem; 1992 Sep; 208(3):659-67. PubMed ID: 1396673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function in rhodopsin: effects of disulfide cross-links in the cytoplasmic face of rhodopsin on transducin activation and phosphorylation by rhodopsin kinase.
    Cai K; Klein-Seetharaman J; Hwa J; Hubbell WL; Khorana HG
    Biochemistry; 1999 Sep; 38(39):12893-8. PubMed ID: 10504260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP-independent deactivation of squid rhodopsin.
    Kahana A; Robinson PR; Lewis LJ; Szuts EZ; Lisman JE
    Vis Neurosci; 1992 Dec; 9(6):595-602. PubMed ID: 1450111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.