These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Inhibition by cycloserine of the synthesis of 5-amino-4-imidazolecarboxamide by Escherichia coli. ISHII K; SEVAG MG Antibiot Chemother (Northfield); 1956 Aug; 6(8):500-3. PubMed ID: 24544088 [No Abstract] [Full Text] [Related]
24. Chromatographic studies of purine metabolism. II. The mechanism of E. coli inhibition by A-methopterin. TOMISEK AJ; KELLY HJ; REID MR; SKIPPER HE Arch Biochem Biophys; 1958 Jul; 76(1):45-55. PubMed ID: 13560011 [No Abstract] [Full Text] [Related]
25. Studies on purine metabolism in bacteria. I. The role of p-aminobenzoic acid. GOTS JS; CHU EC J Bacteriol; 1952 Oct; 64(4):537-46. PubMed ID: 12999682 [No Abstract] [Full Text] [Related]
26. Metabolism of 6-methylaminopurine: synthesis and demethylation by Escherichia coli. REMY CN J Biol Chem; 1961 Nov; 236():2999-3005. PubMed ID: 14491430 [No Abstract] [Full Text] [Related]
27. BIOSYNTHESIS OF RIBOFLAVINE BY A PURINE-REQUIRING MUTANT STRAIN OF ESCHERICHIA COLI. HOWELLS DJ; PLAUT GW Biochem J; 1965 Mar; 94(3):755-9. PubMed ID: 14340067 [TBL] [Abstract][Full Text] [Related]
28. Purine metabolism in bacteria. VI. Accumulations by mutants lacking adenylosuccinase. GOLLUB EG; GOTS JS J Bacteriol; 1959 Sep; 78(3):320-5. PubMed ID: 13850825 [No Abstract] [Full Text] [Related]
29. An investigation of the natural occurrence of 4-amino-5-imidazolecarboxamide in several strains of Escherichia coli. SLOTNICK IJ; SEVAG MG Arch Biochem Biophys; 1955 Aug; 57(2):491-5. PubMed ID: 13259663 [No Abstract] [Full Text] [Related]
30. Differences in the synthesis of folic acid and 5-amino-4-imidazolecarboxamide in sulfathiazole sensitive and resistant strains of Escherichia coli. Ishii K; Sevag MG J Bacteriol; 1957 Aug; 74(2):265-6. PubMed ID: 13475232 [No Abstract] [Full Text] [Related]
31. Purine metabolism in bacteria. IV. L-azaserine as an inhibitor. GOLLUB EG; GOTS JS J Bacteriol; 1956 Dec; 72(6):858-64. PubMed ID: 13398378 [No Abstract] [Full Text] [Related]
32. Role of purine biosynthetic intermediates in response to folate stress in Escherichia coli. Rohlman CE; Matthews RG J Bacteriol; 1990 Dec; 172(12):7200-10. PubMed ID: 2254281 [TBL] [Abstract][Full Text] [Related]
33. The effect of 4-amino-5-imidazolecarboxamide on the incorporation of purines into liver nucleic acids of the mouse. MANDEL HG; WAY JL; SMITH PK Biochim Biophys Acta; 1957 Feb; 23(2):402-4. PubMed ID: 13412737 [No Abstract] [Full Text] [Related]
34. The influence of histidine on the biosynthesis of purines in Escherichia coli. HEDEGAARD J; NGUYEN-VAN-THOAI ; ROCHE J Arch Biochem Biophys; 1959 Jul; 83(1):183-94. PubMed ID: 13662005 [No Abstract] [Full Text] [Related]
35. Studies on the biosynthesis of nucleic acids. I. On the rôle of 4-aminoimidazole-5-carboxamide as a precursor of polynucleotide purines. NOGUCHI T Pharm Bull; 1956 Apr; 4(2):92-6. PubMed ID: 13335470 [No Abstract] [Full Text] [Related]
36. Evolutionary convergence in the biosyntheses of the imidazole moieties of histidine and purines. Vázquez-Salazar A; Becerra A; Lazcano A PLoS One; 2018; 13(4):e0196349. PubMed ID: 29698445 [TBL] [Abstract][Full Text] [Related]
37. Regulation of the basal and cyclic AMP-stimulated rates of glycogen synthesis in Escherichia coli by an intermediate of purine biosynthesis. Leckie MP; Porter SE; Tieber VL; Dietzler DN Biochem Biophys Res Commun; 1981 Apr; 99(4):1433-42. PubMed ID: 6266423 [No Abstract] [Full Text] [Related]