BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 14928)

  • 1. Measurement of the pH of frozen buffer solutions by using pH indicators.
    Orii Y; Morita M
    J Biochem; 1977 Jan; 81(1):163-8. PubMed ID: 14928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of pH indicators to identify suitable environments for freezing samples in aqueous and mixed aqueous/nonaqueous solutions.
    Hill JP; Buckley PD
    Anal Biochem; 1991 Feb; 192(2):358-61. PubMed ID: 2035835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in apparent pH on freezing aqueous buffer solutions and their relevance to biochemical electron-paramagnetic-resonance spectroscopy.
    Williams-Smith DL; Bray RC; Barber MJ; Tsopanakis AD; Vincent SP
    Biochem J; 1977 Dec; 167(3):593-600. PubMed ID: 23760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycine crystallization in frozen and freeze-dried systems: effect of pH and buffer concentration.
    Varshney DB; Kumar S; Shalaev EY; Sundaramurthi P; Kang SW; Gatlin LA; Suryanarayanan R
    Pharm Res; 2007 Mar; 24(3):593-604. PubMed ID: 17245648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of glycerol and dimethyl sulfoxide on changes in composition and pH of buffer salt solutions during freezing.
    Van Den Berg L; Soliman FS
    Cryobiology; 1969; 6(2):93-7. PubMed ID: 5353163
    [No Abstract]   [Full Text] [Related]  

  • 6. Standard electromotive force of the H2-AgCl;Ag cell in 30, 40, and 50 mass% glycerol/water from -20 to 25 degrees C: pK2 and pH values for a standard "mops" buffer in 50 mass% glycerol/water.
    Roy RN; Gibbons JJ; McGinnis T; Woodmansee R
    Cryobiology; 1985 Dec; 22(6):578-88. PubMed ID: 4075812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the crystallization propensity of carboxylic acid buffers in frozen systems--relevance to freeze-drying.
    Sundaramurthi P; Suryanarayanan R
    J Pharm Sci; 2011 Apr; 100(4):1288-93. PubMed ID: 24081466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of initial buffer composition on pH changes during far-from-equilibrium freezing of sodium phosphate buffer solutions.
    Gómez G; Pikal MJ; Rodríguez-Hornedo N
    Pharm Res; 2001 Jan; 18(1):90-7. PubMed ID: 11336359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing the acidities of aqueous, frozen, and freeze-dried phosphate buffers: Is there a "pH memory" effect?
    Vetráková Ľ; Vykoukal V; Heger D
    Int J Pharm; 2017 Sep; 530(1-2):316-325. PubMed ID: 28779984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation.
    Kolhe P; Amend E; Singh SK
    Biotechnol Prog; 2010; 26(3):727-33. PubMed ID: 20039442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of glycine on pH changes and protein stability during freeze-thawing in phosphate buffer systems.
    Pikal-Cleland KA; Cleland JL; Anchordoquy TJ; Carpenter JF
    J Pharm Sci; 2002 Sep; 91(9):1969-79. PubMed ID: 12210044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating freezing-induced acidity changes in citrate buffers.
    Susrisweta B; Veselý L; Štůsek R; Hauptmann A; Loerting T; Heger D
    Int J Pharm; 2023 Aug; 643():123211. PubMed ID: 37422143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Making good's buffers good for freezing: The acidity changes and their elimination via mixing with sodium phosphate.
    Veselý L; Susrisweta B; Heger D
    Int J Pharm; 2021 Jan; 593():120128. PubMed ID: 33271311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermophysical properties of carboxylic and amino acid buffers at subzero temperatures: relevance to frozen state stabilization.
    Sundaramurthi P; Suryanarayanan R
    J Phys Chem B; 2011 Jun; 115(21):7154-64. PubMed ID: 21561117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solute crystallization in frozen systems-use of synchrotron radiation to improve sensitivity.
    Varshney DB; Kumar S; Shalaev EY; Kang SW; Gatlin LA; Suryanarayanan R
    Pharm Res; 2006 Oct; 23(10):2368-74. PubMed ID: 16927181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein denaturation during freezing and thawing in phosphate buffer systems: monomeric and tetrameric beta-galactosidase.
    Pikal-Cleland KA; Rodríguez-Hornedo N; Amidon GL; Carpenter JF
    Arch Biochem Biophys; 2000 Dec; 384(2):398-406. PubMed ID: 11368330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calorimetric and diffractometric evidence for the sequential crystallization of buffer components and the consequential pH swing in frozen solutions.
    Sundaramurthi P; Shalaev E; Suryanarayanan R
    J Phys Chem B; 2010 Apr; 114(14):4915-23. PubMed ID: 20302316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freezing-induced protein aggregation - Role of pH shift and potential mitigation strategies.
    Thorat AA; Munjal B; Geders TW; Suryanarayanan R
    J Control Release; 2020 Jul; 323():591-599. PubMed ID: 32335158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping of solution components, pH changes, protein stability and the elimination of protein precipitation during freeze-thawing of fibroblast growth factor 20.
    Maity H; Karkaria C; Davagnino J
    Int J Pharm; 2009 Aug; 378(1-2):122-35. PubMed ID: 19505546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formulation development of frozen parenteral dosage forms.
    Chilamkurti RN
    J Parenter Sci Technol; 1992; 46(4):124-9. PubMed ID: 1453281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.