These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 14928227)

  • 21. Amino acid metabolism and protein synthesis in streptomycin resistant Vibrio El Tor.
    Bhattacharya G; Chatterjee GC
    Acta Microbiol Pol; 1976; 25(2):117-22. PubMed ID: 59524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of streptomycin on cell size of a strain of Pseudomonas aeruginosa.
    Bernheim F
    Can J Microbiol; 1969 Feb; 15(2):209-13. PubMed ID: 4974370
    [No Abstract]   [Full Text] [Related]  

  • 23. Assessment of antivirulence activity of several d-amino acids against Acinetobacter baumannii and Pseudomonas aeruginosa.
    Rumbo C; Vallejo JA; Cabral MP; Martínez-Guitián M; Pérez A; Beceiro A; Bou G
    J Antimicrob Chemother; 2016 Dec; 71(12):3473-3481. PubMed ID: 27605598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Influence of choloramphenicol on the development and composition of free and bound amino acids in Salmonella bareilly].
    ALLEGRA G; NIUTTA R; GIUFFRIDA G
    Riv Ist Sieroter Ital; 1959; 34(1):47-55. PubMed ID: 13646480
    [No Abstract]   [Full Text] [Related]  

  • 25. Preferential uptake of D-alpha-aminoadipate from a racemic mixture by an Alcaligenes denitrificans.
    Wood T; Hartline RA
    Biochim Biophys Acta; 1971; 230(3):446-50. PubMed ID: 5581277
    [No Abstract]   [Full Text] [Related]  

  • 26. Oxidation of D- and L-valine by enzymes of Pseudomonas aeruginosa.
    Norton JE; Sokath JR
    J Bacteriol; 1966 Jul; 92(1):116-20. PubMed ID: 4957429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Action of chloramphenicol on the diffusion of free amino acids from the bacterial cells of Salmonella bareilly].
    NIUTTA R; GIUFFRIDA G
    Riv Ist Sieroter Ital; 1959; 34():382-7. PubMed ID: 14427386
    [No Abstract]   [Full Text] [Related]  

  • 28. [On the problem of antibiotic combinations in Pseudomonas aeruginosa in vitro].
    Jedlicková Z; Ryc M; Cermák V; Bárová V
    Z Gesamte Inn Med; 1967 Apr; 22(7):213-8. PubMed ID: 4299392
    [No Abstract]   [Full Text] [Related]  

  • 29. Effects of antibiotics on adherence of Pseudomonas aeruginosa and Pseudomonas fluorescens to A549 pneumocyte cells.
    Di Martino P; Rebière-Huët J; Hulen C
    Chemotherapy; 2000; 46(2):129-34. PubMed ID: 10671764
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effect of the artificial electron acceptor reumycin on the nature of an intermediate accumulated by Pseudomonas aeruginosa bacteria].
    Trutko SM; Akimenko VK
    Mikrobiologiia; 1991; 60(1):41-7. PubMed ID: 1910144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Biosynthesis of amino nitrogen by Pseudomonas aeruginosa and Salmonella paratyphi B].
    CESAIRE OG; NEUZIL E; BOIRON H; LECOMTE M
    C R Seances Soc Biol Fil; 1957; 151(6):1167-71. PubMed ID: 13511856
    [No Abstract]   [Full Text] [Related]  

  • 32. Mechanism of chloramphenicol resistance in E. coli. III. The total amino-acid composition of chloramphenicol resistant E. coli and electrophoretical pattern of its beta-galactosidase.
    OKAMOTO S; OHTAKI K; MIZUNO D
    Jpn J Med Sci Biol; 1959 Jun; 12():125-31. PubMed ID: 14428522
    [No Abstract]   [Full Text] [Related]  

  • 33. Single live cell imaging of chromosomes in chloramphenicol-induced filamentous Pseudomonas aeruginosa.
    Steel C; Wan Q; Xu XH
    Biochemistry; 2004 Jan; 43(1):175-82. PubMed ID: 14705943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Study on the sensibility "in vitro" to antibiotics of 77 strains of "Pseudomonas aeruginosa" (author's transl)].
    Padovani F; Pilotti C
    Ann Sclavo; 1976; 18(5):749-54. PubMed ID: 829305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Concurrent obtaining of aromatic (R)-2-hydroxyacids and aromatic 2-ketoacids by asymmetric oxidation with a newly isolated Pseudomonas aeruginosa ZJB1125.
    Xue YP; Tian FF; Ruan LT; Liu ZQ; Zheng YG; Shen YC
    J Biotechnol; 2013 Sep; 167(3):271-8. PubMed ID: 23831556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Studies on the lysotype of Pseudomonas aeruginosa].
    Herrmann H
    Z Gesamte Hyg; 1970 Nov; 16(11):876-9. PubMed ID: 4995081
    [No Abstract]   [Full Text] [Related]  

  • 37. Amino acid utilization and glutamic acid synthesis by variants of Pseudomonas aeruginosa.
    WILLIAMSON CK
    J Am Pharm Assoc Am Pharm Assoc; 1957 May; 46(5):307-9. PubMed ID: 13502187
    [No Abstract]   [Full Text] [Related]  

  • 38. Inclusion complexes of chloramphenicol with β-cyclodextrin and aminoacids as a way to increase drug solubility and modulate ROS production.
    Aiassa V; Zoppi A; Albesa I; Longhi MR
    Carbohydr Polym; 2015 May; 121():320-7. PubMed ID: 25659705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Influence of low level antibiotics on Pseudomonas aeruginosa].
    Honma Y; Iwanaga M
    Kansenshogaku Zasshi; 1991 Mar; 65(3):286-92. PubMed ID: 1906512
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutations in the chloramphenicol acetyltransferase (S61G, Y105C) increase accumulated amounts and resistance in Pseudomonas aeruginosa.
    Wang J; Liu JH
    FEMS Microbiol Lett; 2004 Jul; 236(2):197-204. PubMed ID: 15251197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.