These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 14929)

  • 41. Studies on the active centre of Rhodotorula gracilis D-amino acid oxidase and comparison with pig kidney enzyme.
    Pollegioni L; Ghisla S; Pilone MS
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):389-94. PubMed ID: 1356333
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of cofactor binding in tryptophan accessibility and conformational stability of His-tagged D-amino acid oxidase from Trigonopsis variabilis.
    Arroyo M; Menéndez M; García JL; Campillo N; Hormigo D; de la Mata I; Castillón MP; Acebal C
    Biochim Biophys Acta; 2007 May; 1774(5):556-65. PubMed ID: 17466607
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A study of the interactions between flavoprotein and quasi-substrates. Circular dichroism spectra of D-amino acid oxidase complexes.
    Shiga K; Horiike K; Nishina Y; Isomoto A; Yamano T
    J Biochem; 1977 May; 81(5):1465-72. PubMed ID: 19436
    [No Abstract]   [Full Text] [Related]  

  • 44. Spectroscopic demonstration of an initial stage of the complex of D-amino acid oxidase and its substrate D-alpha-aminobutyric acid.
    Yagi K; Lange R; Douzou P
    Biochem Biophys Res Commun; 1980 Nov; 97(2):370-4. PubMed ID: 6110424
    [No Abstract]   [Full Text] [Related]  

  • 45. A model for circular dichroism monitored dimerization and calcium binding in an EF-hand synthetic peptide.
    Franchini PL; Reid RE
    J Theor Biol; 1999 Jul; 199(2):199-211. PubMed ID: 10395814
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The carboxyl side chain of glutamate 681 interacts with a chloride binding modifier site that allosterically modulates the dimeric conformational state of band 3 (AE1). Implications for the mechanism of anion/proton cotransport.
    Salhany JM; Sloan RL; Cordes KS
    Biochemistry; 2003 Feb; 42(6):1589-602. PubMed ID: 12578372
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nature of protamine-DNA complexes. A special type of ligand binding co-operativity.
    Porschke D
    J Mol Biol; 1991 Nov; 222(2):423-33. PubMed ID: 1960734
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of ligand valency on ligand-influenced monomer-dimer equilibrium systems and biological control mechanisms.
    Wolfer GK; Rippon WB
    J Protein Chem; 1989 Apr; 8(2):289-98. PubMed ID: 2736044
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Partial purification and characterization of a D-amino acid oxidase from the hepatopancreas of Octopus vulgaris].
    Rava R; Spinosi G; Brunetti A
    Boll Soc Ital Biol Sper; 1981 Jan; 57(1):111-7. PubMed ID: 6113836
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Binding of substrate analogues to subsites D, E, and F of hen egg-white lysozyme.
    Ikeda K; Hamaguchi K
    J Biochem; 1976 Feb; 79(2):237-47. PubMed ID: 5426
    [TBL] [Abstract][Full Text] [Related]  

  • 51. pH-dependent self-association of zinc-free insulin characterized by concentration-gradient static light scattering.
    Attri AK; Fernández C; Minton AP
    Biophys Chem; 2010 May; 148(1-3):28-33. PubMed ID: 20202737
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Monomer-dimer equilibrium of D-amino-acid oxidase apoenzyme.
    Yagi K; Ozawa T; Ohishi N
    J Biochem; 1968 Oct; 64(4):567-9. PubMed ID: 4387726
    [No Abstract]   [Full Text] [Related]  

  • 54. [Molecular weight and tertiary structure of transketolase from baker's yeast].
    Beliaeva RKh; Cheriiak VIa; Magretova NN; Kochetov GA
    Biokhimiia; 1978 Mar; 43(3):545-54. PubMed ID: 26423
    [TBL] [Abstract][Full Text] [Related]  

  • 55. NMR investigation of main-chain dynamics of the H80E mutant of bovine neurophysin-I: demonstration of dimerization-induced changes at the hormone-binding site.
    Naik MT; Lee H; Bracken C; Breslow E
    Biochemistry; 2005 Sep; 44(35):11766-76. PubMed ID: 16128578
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The dimerization of ferrihaems. III. Equilibrium and kinetic studies on the dimerization of coproferrihaem.
    Brown SB; Hatzikonstantinou H
    Biochim Biophys Acta; 1978 Dec; 544(2):407-17. PubMed ID: 31193
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ligand-induced monomerization of Allochromatium vinosum cytochrome c' studied using native mass spectrometry and fluorescence resonance energy transfer.
    Evers TH; van Dongen JL; Meijer EW; Merkx M
    J Biol Inorg Chem; 2007 Aug; 12(6):919-28. PubMed ID: 17546467
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Monomer/dimer equilibrium of the AB-type lectin from mistletoe enables combination of toxin/agglutinin activities in one protein: analysis of native and citraconylated proteins by ultracentrifugation/gel filtration and cell biological consequences of dimer destabilization.
    Jiménez M; Sáiz JL; André S; Gabius HJ; Solís D
    Glycobiology; 2005 Dec; 15(12):1386-95. PubMed ID: 16037489
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of macromolecular heterogeneity by equilibrium sedimentation techniques.
    Xu Y
    Biophys Chem; 2004 Mar; 108(1-3):141-63. PubMed ID: 15043927
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metal-linked dimerization in the iron-dependent regulator from Mycobacterium tuberculosis.
    Semavina M; Beckett D; Logan TM
    Biochemistry; 2006 Oct; 45(41):12480-90. PubMed ID: 17029403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.