These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 1493359)
21. Diproline templates as folding nuclei in designed peptides. Conformational analysis of synthetic peptide helices containing amino terminal Pro-Pro segments. Rai R; Aravinda S; Kanagarajadurai K; Raghothama S; Shamala N; Balaram P J Am Chem Soc; 2006 Jun; 128(24):7916-28. PubMed ID: 16771506 [TBL] [Abstract][Full Text] [Related]
22. Empirical calculations on cyclic dipeptides. Conformations of aspartic acid, glutamic acid and histidine residues. Genest M; Ptak M Int J Pept Protein Res; 1980 Jan; 15(1):5-19. PubMed ID: 7358456 [TBL] [Abstract][Full Text] [Related]
23. Designing of peptides with left handed helical structure by incorporating the unusual amino acids. Nandel FS; Malik N; Virdi M; Singh B Indian J Biochem Biophys; 1999 Jun; 36(3):195-203. PubMed ID: 10650718 [TBL] [Abstract][Full Text] [Related]
24. Helical pores self-assembled from homochiral dendritic dipeptides based on L-Tyr and nonpolar alpha-amino acids. Percec V; Dulcey AE; Peterca M; Adelman P; Samant R; Balagurusamy VS; Heiney PA J Am Chem Soc; 2007 May; 129(18):5992-6002. PubMed ID: 17429976 [TBL] [Abstract][Full Text] [Related]
25. Conformational studies of heterochiral peptides with diastereoisomeric residues: crystal and molecular structures of linear dipeptides derived from leucine, isoleucine, and allo-isoleucine. Di Blasio B; Saviano M; Del Duca V; De Simone G; Rossi F; Pedone C; Benedetti E; Lorenzi GP Biopolymers; 1995 Oct; 36(4):401-8. PubMed ID: 7578937 [TBL] [Abstract][Full Text] [Related]
26. Secondary structures of short peptide chains in the gas phase: double resonance spectroscopy of protected dipeptides. Chin W; Dognon JP; Canuel C; Piuzzi F; Dimicoli I; Mons M; Compagnon I; von Helden G; Meijer G J Chem Phys; 2005 Feb; 122(5):54317. PubMed ID: 15740332 [TBL] [Abstract][Full Text] [Related]
27. On the multiple-minima problem in the conformational analysis of polypeptides. IV. Application of the electrostatically driven Monte Carlo method to the 20-residue membrane-bound portion of melittin. Ripoll DR; Scheraga HA Biopolymers; 1990; 30(1-2):165-76. PubMed ID: 2224048 [TBL] [Abstract][Full Text] [Related]
28. Conformational study of peptides containing dehydrophenylalanine: helical structures without hydrogen bond. Nandel FS; Kaur H; Malik N; Shankar N; Jain DV Indian J Biochem Biophys; 2001 Dec; 38(6):417-25. PubMed ID: 11989673 [TBL] [Abstract][Full Text] [Related]
29. Solvation effects on alanine dipeptide: A MP2/cc-pVTZ//MP2/6-31G** study of (Phi, Psi) energy maps and conformers in the gas phase, ether, and water. Wang ZX; Duan Y J Comput Chem; 2004 Nov; 25(14):1699-716. PubMed ID: 15362127 [TBL] [Abstract][Full Text] [Related]
30. The energy of formation of internal loops in triple-helical collagen polypeptides. Paterlini MG; Némethy G; Scheraga HA Biopolymers; 1995 Jun; 35(6):607-19. PubMed ID: 7766826 [TBL] [Abstract][Full Text] [Related]
31. Cyclic retro-inverso dipeptides with two aromatic side chains. II. Conformational analysis. Yamazaki T; Nunami K; Goodman M Biopolymers; 1991 Nov; 31(13):1513-28. PubMed ID: 1814501 [TBL] [Abstract][Full Text] [Related]
32. Crystal structures of peptide enantiomers and racemates: probing conformational diversity in heterochiral Pro-Pro sequences. Saha I; Chatterjee B; Shamala N; Balaram P Biopolymers; 2008; 90(4):537-43. PubMed ID: 18335426 [TBL] [Abstract][Full Text] [Related]
33. [Two types of tripeptide conformation in collagen. Calculation of the structure of (Gly-Pro-Ser)n and (Gly-Val-Hyp)n polytripeptides]. Abagyan RA; Tumanian VG; Esipova NG Bioorg Khim; 1984 Apr; 10(4):476-82. PubMed ID: 6548632 [TBL] [Abstract][Full Text] [Related]
34. Studies on beta-turn of peptides. X. Effect of the chirality of 1st and 4th amino acids of tetrapeptide sequences on their beta-turn preferences studied by conformational energy calculation. Kawai M; Sato K; Nagai U Int J Pept Protein Res; 1984 Dec; 24(6):607-12. PubMed ID: 6530336 [TBL] [Abstract][Full Text] [Related]
35. Comparison of a QM/MM force field and molecular mechanics force fields in simulations of alanine and glycine "dipeptides" (Ace-Ala-Nme and Ace-Gly-Nme) in water in relation to the problem of modeling the unfolded peptide backbone in solution. Hu H; Elstner M; Hermans J Proteins; 2003 Feb; 50(3):451-63. PubMed ID: 12557187 [TBL] [Abstract][Full Text] [Related]
36. Stability of cis, trans, and nonplanar peptide groups. Zimmerman SS; Scheraga HA Macromolecules; 1976; 9(3):408-16. PubMed ID: 940354 [TBL] [Abstract][Full Text] [Related]
37. Quantum mechanical study of secondary structure formation in protected dipeptides. Sarić A; Hrenar T; Malis M; Doslić N Phys Chem Chem Phys; 2010 May; 12(18):4678-85. PubMed ID: 20428547 [TBL] [Abstract][Full Text] [Related]
38. Intra- and intermolecular interaction inducing pyramidalization on both sides of a proline dipeptide during isomerization: an ab initio QM/MM molecular dynamics simulation study in explicit water. Yonezawa Y; Nakata K; Sakakura K; Takada T; Nakamura H J Am Chem Soc; 2009 Apr; 131(12):4535-40. PubMed ID: 19267429 [TBL] [Abstract][Full Text] [Related]
39. Free energy determinants of secondary structure formation: I. alpha-Helices. Yang AS; Honig B J Mol Biol; 1995 Sep; 252(3):351-65. PubMed ID: 7563056 [TBL] [Abstract][Full Text] [Related]
40. Role of solvent in determining conformational preferences of alanine dipeptide in water. Drozdov AN; Grossfield A; Pappu RV J Am Chem Soc; 2004 Mar; 126(8):2574-81. PubMed ID: 14982467 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]