These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 14934)
1. Spontaneous deamidation of a protein antibiotic, neocarzinostatin, at weakly acidic pH. Conversion to a homologous inactive preneocarzinostatin due to change of asparagine 83 to aspartic acid 83 accompanied by conformational and biological alterations. Maeda H; Kuromizu K J Biochem; 1977 Jan; 81(1):25-35. PubMed ID: 14934 [TBL] [Abstract][Full Text] [Related]
2. Neocarzinostatin: effect of modification of side chain amino and carboxyl groups on chemical and biological properties. Samy TS Biochemistry; 1977 Dec; 16(25):5573-8. PubMed ID: 144523 [TBL] [Abstract][Full Text] [Related]
3. A lipophilic derivative of neocarzinostatin. A polymer conjugation of an antitumor protein antibiotic. Maeda H; Takeshita J; Kanamaru R Int J Pept Protein Res; 1979 Aug; 14(2):81-7. PubMed ID: 158571 [TBL] [Abstract][Full Text] [Related]
4. A facile method of purification of neocarzinostatin, an antitumor protein. Samy TS; Hu JM; Meienhofer J; Lazarus H; Johnson RK J Natl Cancer Inst; 1977 Jun; 58(6):1765-8. PubMed ID: 140942 [TBL] [Abstract][Full Text] [Related]
5. Radioimmunoassay of neocarzinostatin, an antitumor protein. Samy TS; Raso V Cancer Res; 1976 Dec; 36(12):4378-81. PubMed ID: 63321 [TBL] [Abstract][Full Text] [Related]
6. Reexamination of the primary structure of an antitumor protein, neocarzinostatin. Kuromizu K; Tsunasawa S; Maeda H; Abe O; Sakiyama F Arch Biochem Biophys; 1986 Apr; 246(1):199-205. PubMed ID: 2938543 [TBL] [Abstract][Full Text] [Related]
7. Reversible modification of arginine residues in neocarzinostatin. Isolation of a biologically active 89-residue fragment from the tryptic hydrolysate. Samy TS; Kappen LS; Goldberg IH J Biol Chem; 1980 Apr; 255(8):3420-6. PubMed ID: 6444949 [TBL] [Abstract][Full Text] [Related]
8. An antitumor polypeptide antibiotic neocarzinostatin: the mode of apo-protein--chromophore interaction. Edo K; Saito K; Akiyama-Murai Y; Mizugaki M; Koide Y; Ishida N J Antibiot (Tokyo); 1988 Apr; 41(4):554-62. PubMed ID: 2967272 [TBL] [Abstract][Full Text] [Related]
9. Roles of chromophore and apo-protein in neocarzinostatin action. Kappen LS; Napier MA; Goldberg IH Proc Natl Acad Sci U S A; 1980 Apr; 77(4):1970-4. PubMed ID: 6445563 [TBL] [Abstract][Full Text] [Related]
10. Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid. Catak S; Monard G; Aviyente V; Ruiz-López MF J Phys Chem A; 2008 Sep; 112(37):8752-61. PubMed ID: 18714962 [TBL] [Abstract][Full Text] [Related]
11. Neocarzinostatin chromophore. Assignment of spectral properties and structural requirements for binding to DNA. Napier MA; Goldberg IH Mol Pharmacol; 1983 Mar; 23(2):500-10. PubMed ID: 6220205 [TBL] [Abstract][Full Text] [Related]
12. Characterization of secondary structure of neocarzinostatin apoprotein. Saito K; Sato Y; Edo K; Akiyama-Murai Y; Koide Y; Ishida N; Mizugaki M Chem Pharm Bull (Tokyo); 1989 Nov; 37(11):3078-82. PubMed ID: 2534360 [TBL] [Abstract][Full Text] [Related]
13. Spontaneous chemical reversion of an active site mutation: deamidation of an asparagine residue replacing the catalytic aspartic acid of glutamate dehydrogenase. Paradisi F; Dean JL; Geoghegan KF; Engel PC Biochemistry; 2005 Mar; 44(9):3636-43. PubMed ID: 15736973 [TBL] [Abstract][Full Text] [Related]
14. A revised primary structure for neocarzinostatin based on fast atom bombardment and gas chromatographic-mass spectrometry. Gibson BW; Herlihy WC; Samy TS; Hahm KS; Maeda H; Meienhofer J; Biemann K J Biol Chem; 1984 Sep; 259(17):10801-6. PubMed ID: 6236220 [TBL] [Abstract][Full Text] [Related]
15. Urea treatment and pronase digestion of antitumor protein antibiotics, auromomycin and neocarzinostatin. Suzuki H; Ozawa S; Tanaka N J Antibiot (Tokyo); 1980 Dec; 33(12):1545-50. PubMed ID: 6454671 [TBL] [Abstract][Full Text] [Related]
16. The relative rates of glutamine and asparagine deamidation in glucagon fragment 22-29 under acidic conditions. Joshi AB; Kirsch LE J Pharm Sci; 2002 Nov; 91(11):2331-45. PubMed ID: 12379918 [TBL] [Abstract][Full Text] [Related]
17. Structure of the antitumor protein neocarzinostatin. Purification, amino acid composition, disulfide reduction, and isolation and composition of tryptic peptides. Maeda H; Glaser CB; Czombos J; Meienhoffer J Arch Biochem Biophys; 1974 Oct; 164(2):369-78. PubMed ID: 4282218 [No Abstract] [Full Text] [Related]
18. Importance of asparagine-61 and asparagine-109 to the angiogenic activity of human angiogenin. Hallahan TW; Shapiro R; Strydom DJ; Vallee BL Biochemistry; 1992 Sep; 31(34):8022-9. PubMed ID: 1380830 [TBL] [Abstract][Full Text] [Related]
19. Tertiary structure is a principal determinant to protein deamidation. Kossiakoff AA Science; 1988 Apr; 240(4849):191-4. PubMed ID: 3353715 [TBL] [Abstract][Full Text] [Related]
20. Characterization of asparagine 330 deamidation in an Fc-fragment of IgG1 using cation exchange chromatography and peptide mapping. Zhang YT; Hu J; Pace AL; Wong R; Wang YJ; Kao YH J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Aug; 965():65-71. PubMed ID: 24999246 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]